Fast Inference and Learning for Modeling Documents with a Deep Boltzmann Machine
暂无分享,去创建一个
Nitish Srivastava | Geoffrey E. Hinton | Ruslan Salakhutdinov | R. Salakhutdinov | Nitish Srivastava
[1] Geoffrey E. Hinton,et al. Replicated Softmax: an Undirected Topic Model , 2009, NIPS.
[2] Radford M. Neal. Annealed importance sampling , 1998, Stat. Comput..
[3] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[4] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.
[5] Thomas L. Griffiths,et al. The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies , 2007, JACM.
[6] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[7] David M. Blei,et al. Probabilistic topic models , 2012, Commun. ACM.
[8] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[9] Chong Wang,et al. Variational Inference for the Nested Chinese Restaurant Process , 2009, NIPS.
[10] Geoffrey E. Hinton,et al. Deep Boltzmann Machines , 2009, AISTATS.
[11] Tijmen Tieleman,et al. Training restricted Boltzmann machines using approximations to the likelihood gradient , 2008, ICML '08.
[12] Yee Whye Teh,et al. Collapsed Variational Inference for HDP , 2007, NIPS.
[13] Andrew McCallum,et al. Topic Models Conditioned on Arbitrary Features with Dirichlet-multinomial Regression , 2008, UAI.
[14] Hugo Larochelle,et al. A Neural Autoregressive Topic Model , 2012, NIPS.
[15] L. Younes. On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates , 1999 .
[16] Geoffrey E. Hinton,et al. A Better Way to Pretrain Deep Boltzmann Machines , 2012, NIPS.
[17] Thomas L. Griffiths,et al. Online Inference of Topics with Latent Dirichlet Allocation , 2009, AISTATS.