The Scaling Relations of Galaxy Clusters and Their Dark Matter Halos

Like early-type galaxies, nearby galaxy clusters also define fundamental plane, luminosity-radius, and luminosity-velocity dispersion relations, whose physical origins are still unclear. By means of high-resolution N-body simulations of massive dark matter halos in a ΛCDM (Λ cold dark matter) cosmology, we find that scaling relations similar to those observed for galaxy clusters are already defined by their dark matter hosts. The slopes, however, are not the same, and among the various possibilities in principle able to bring the simulated and the observed scaling relations into mutual agreement, we show that the preferred solution is a luminosity-dependent mass-to-light ratio (M/L ∝ L~0.3) that corresponds well to what is inferred observationally. We then show that at galactic scales there is a conflict between the cosmological predictions of structure formation, the observed trend of the mass-to-light ratio in elliptical galaxies, and the slope of their luminosity-velocity dispersion relation (which significantly differs from the analogous one followed by clusters). The conclusion is that the scaling laws of elliptical galaxies might be the combined result of the cosmological collapse of density fluctuations at the epoch when galactic scales became nonlinear plus important modifications afterward due to early-time dissipative merging. Finally, we briefly discuss the possible evolution of the cluster scaling relations with redshift.

[1]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation , 2003 .

[2]  A. C. González-García,et al.  Mergers between elliptical galaxies and the thickening of the Fundamental Plane , 2003, astro-ph/0304436.

[3]  J. Mohr,et al.  Near-Infrared Properties of Galaxy Clusters: Luminosity as a Binding Mass Predictor and the State of Cluster Baryons , 2003, astro-ph/0304033.

[4]  A. Zabludoff,et al.  Galaxy Luminosity Functions from Deep Spectroscopic Samples of Rich Clusters , 2003, astro-ph/0304031.

[5]  B. Lanzoni,et al.  Projection effects on the FP thickness A Monte-Carlo exploration ? , 2003, astro-ph/0303553.

[6]  M. Bershady,et al.  The Kinematics in the Core of the Low Surface Brightness Galaxy DDO 39 , 2003, astro-ph/0303052.

[7]  P. Londrillo,et al.  Galaxy merging, the fundamental plane of elliptical galaxies and the MBH-σ0 relation , 2003, astro-ph/0302423.

[8]  R. Nichol,et al.  Early-Type Galaxies in the Sloan Digital Sky Survey. III. The Fundamental Plane , 2003, astro-ph/0301626.

[9]  R. Nichol,et al.  Early-type Galaxies in the Sloan Digital Sky Survey. II. Correlations between Observables , 2003, astro-ph/0301624.

[10]  R. Nichol,et al.  Early-Type Galaxies in the Sloan Digital Sky Survey. IV. Colors and Chemical Evolution , 2003, astro-ph/0301629.

[11]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: the luminosity function of cluster galaxies , 2002, astro-ph/0212562.

[12]  Christine C. Dantas,et al.  ‘Fundamental Plane’-like relations from collisionless stellar dynamics: a comparison of mergers and collapses , 2002, astro-ph/0211251.

[13]  P. Dokkum,et al.  The Fundamental Plane at z = 1.27: First Calibration of the Mass Scale of Red Galaxies at Redshifts z > 1 , 2002, astro-ph/0210643.

[14]  B. Madore,et al.  The Central Mass Distribution in Dwarf and Low Surface Brightness Galaxies , 2002, astro-ph/0210152.

[15]  M. White,et al.  Clusters of Galaxies in the Local Universe , 2002, astro-ph/0208168.

[16]  Z. Haiman,et al.  What Does the Local Black Hole Mass Distribution Tell Us About the Evolution of the Quasar Luminosity Function , 2001, astro-ph/0112131.

[17]  Roberto Capuzzo Dolcetta Computational Astrophysics in Italy: Methods and Tools Prima Riunione Nazionale, Bologna, 4-5 luglio 2002. , 2003 .

[18]  H. Mo,et al.  Linking early‐ and late‐type galaxies to their dark matter haloes , 2002, astro-ph/0210495.

[19]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[20]  G. Bertin,et al.  Weak homology of elliptical galaxies , 2002, astro-ph/0202208.

[21]  M. Girardi,et al.  Observational Mass-to-Light Ratio of Galaxy Systems from Poor Groups to Rich Clusters , 2001, astro-ph/0112534.

[22]  A. Cavaliere,et al.  Supermassive Black Holes in Galactic Nuclei , 2001, astro-ph/0110644.

[23]  N. Bahcall,et al.  Antibias in Clusters: The Dependence of the Mass-to-Light Ratio on Cluster Temperature , 2001, astro-ph/0109366.

[24]  M. Hudson,et al.  The Mass-to-Light Function of Virialized Systems and the Relationship between Their Optical and X-Ray Properties , 2001, astro-ph/0109134.

[25]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[26]  R. Scranton Modelling galaxy clustering by colour , 2001, astro-ph/0108266.

[27]  S. Okamura,et al.  Luminosity Functions of 10 Nearby Clusters of Galaxies. I. Data , 2002 .

[28]  V. Reshetnikov,et al.  Effect of the environment on the fundamental plane of elliptical galaxies , 2002 .

[29]  J. Kneib,et al.  Distinguishing Local and Global Influences on Galaxy Morphology: A Hubble Space Telescope Comparison of High and Low X-Ray Luminosity Clusters , 2001, astro-ph/0110326.

[30]  T. Buchert,et al.  The morphological and dynamical evolution of simulated galaxy clusters , 2001, astro-ph/0109459.

[31]  N. Yoshida,et al.  Non-Gaussian cosmic microwave background temperature fluctuations from peculiar velocities of clusters , 2001, astro-ph/0104332.

[32]  G. Luppino,et al.  Mass and Light in the Universe , 2001, astro-ph/0203172.

[33]  M. Steinmetz,et al.  The Power Spectrum Dependence of Dark Matter Halo Concentrations , 2000, astro-ph/0012337.

[34]  J. Silk,et al.  Star Formation-Regulated Growth of Black Holes in Protogalactic Spheroids , 2000, astro-ph/0011511.

[35]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[36]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[37]  Giovanni Fasano,et al.  The Evolution of the Galactic Morphological Types in Clusters , 2000 .

[38]  G. Kauffmann,et al.  The Correlation between black hole mass and bulge velocity dispersion in hierarchical galaxy formation models , 2000, astro-ph/0007369.

[39]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[40]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[41]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[42]  R. Cen,et al.  The Structure of Dark Matter Halos in Hierarchical Clustering Theories , 1999, astro-ph/9909279.

[43]  S. Borgani,et al.  Optical Luminosities and Mass-to-Light Ratios of Nearby Galaxy Clusters , 1999, astro-ph/9907266.

[44]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[45]  A. Melott,et al.  Environmental Dependence of the Fundamental Plane of Galaxy Clusters , 1999, The Astrophysical journal.

[46]  D. Forbes,et al.  On the relationship between age and dynamics in elliptical galaxies , 1999, astro-ph/9906368.

[47]  Y. Fujita,et al.  Cosmological Implications of the Fundamental Relations of X-Ray Clusters , 1999, astro-ph/9905083.

[48]  J. Makino,et al.  Change in Mass and Energy of Galaxies through Mutual Encounters , 1999 .

[49]  Y. Mellier Probing the Universe with Weak Lensing , 1998, astro-ph/9812172.

[50]  P. Pellegrini,et al.  Cluster versus Field Elliptical Galaxies and Clues on Their Formation , 1998, astro-ph/9810066.

[51]  Heidelberg,et al.  The tilt of the Fundamental Plane of early‐type galaxies: wavelength dependence , 1998, astro-ph/9809191.

[52]  S. Djorgovski,et al.  Near-Infrared Imaging of Early-Type Galaxies. III. The Near-Infrared Fundamental Plane , 1998, astro-ph/9806315.

[53]  Jr.,et al.  Evolution since z = 0.5 of the Morphology-Density Relation for Clusters of Galaxies , 1997, astro-ph/9707232.

[54]  R. Bender,et al.  Global Relationships Among the Physical Properties of Stellar Systems , 1997, astro-ph/9707037.

[55]  J. Hjorth,et al.  The evolution of cluster E and S0 galaxies measured from the Fundamental Plane , 1997, astro-ph/9905155.

[56]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[57]  F. Bouchet,et al.  The structure and dynamical evolution of dark matter haloes , 1996, astro-ph/9603132.

[58]  L. Costa,et al.  Galaxy Scaling Relations: Origins, Evolution and Applications , 1997 .

[59]  L. Ciotti The Physical Origin of the Fundamental Plane (of Elliptical Galaxies) , 1997 .

[60]  G. Starkman,et al.  Axiorecombination: A New Mechanism for Stellar Axion Production , 1986 .

[61]  P. Dokkum,et al.  The Fundamental Plane in CL 0024 at z = 0.4: implications for the evolution of the mass-to-light ratio , 1996, astro-ph/9603063.

[62]  A. Renzini,et al.  Numerical simulations of merging galaxy clusters , 1996 .

[63]  B. Lanzoni,et al.  The tilt of the fundamental plane of elliptical galaxies — I. Exploring dynamical and structural effects , 1996, astro-ph/9601100.

[64]  S. Cole,et al.  Using the evolution of clusters to constrain Omega , 1996, astro-ph/9601088.

[65]  I. Jørgensen,et al.  The Fundamental Plane for cluster E and S0 galaxies , 1995, astro-ph/9511139.

[66]  S. Cole,et al.  The structure of dark matter haloes in hierarchical clustering models , 1995, astro-ph/9510147.

[67]  M. Stiavelli,et al.  Estimating distances to elliptical galaxies with a mass-luminosity relation , 1995 .

[68]  R. Carlberg,et al.  Mergers of Dissipationless Systems: Clues about the Fundamental Plane , 1995 .

[69]  D. Kelson,et al.  The Evolution of Early-Type Galaxies in Distant Clusters. II. Internal Kinematics of 55 Galaxies in the z=0.33 Cluster Cl 1358+62 , 1995, astro-ph/9908257.

[70]  N. Bahcall,et al.  Dark Matter , 2016, Introduction to Cosmology.

[71]  Paul J. Steinhardt,et al.  The observational case for a low-density Universe with a non-zero cosmological constant , 1995, Nature.

[72]  A. Renzini,et al.  Transverse dissections of the fundamental planes of elliptical galaxies and clusters of galaxies , 1993 .

[73]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[74]  S. Maurogordato,et al.  The fundamental plane of galaxy clusters. , 1993, astro-ph/9304018.

[75]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[76]  M. West,et al.  The radius-mass relation for clusters of galaxies: cosmological scenarios versus observations , 1989 .

[77]  H. J. Rood,et al.  A compilation of redshifts and velocity dispersions for Abell clusters (epoch 1991.2) , 1991 .

[78]  S. Djorgovski,et al.  Fundamental Properties of Elliptical Galaxies , 1987 .

[79]  R. Davies,et al.  Spectroscopy and photometry of elliptical galaxies. I: a new distance estimator , 1987 .

[80]  S. Faber,et al.  Global Scaling Relations for Elliptical Galaxies and Implications for Formation , 1987 .

[81]  F. Critchley,et al.  Multivariate Data Analysis , 1988 .

[82]  S. M. Fall,et al.  The kinematic properties of faint elliptical galaxies. , 1983 .

[83]  John Kormendy,et al.  Brightness distributions in compact and normal galaxies. II. Structure parameters of the spheroidal component. , 1977 .

[84]  S. Faber,et al.  Velocity dispersions and mass-to-light ratios for elliptical galaxies. , 1976 .

[85]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .