Random matrix theory and the Riemann zeros II: n -point correlations

Montgomery has conjectured that the non-trivial zeros of the Riemann zeta-function are pairwise distributed like the eigenvalues of matrices in the Gaussian unitary ensemble (GUE) of random matrix theory (RMT). In this respect, they provide an important model for the statistical properties of the energy levels of quantum systems whose classical limits are strongly chaotic. We generalize this connection by showing that for all the n-point correlation function of the zeros is equivalent to the corresponding GUE result in the appropriate asymptotic limit. Our approach is based on previous demonstrations for the particular cases n = 2, 3, 4. It relies on several new combinatorial techniques, first for evaluating the multiple prime sums involved using a Hardy - Littlewood prime-correlation conjecture, and second for expanding the GUE correlation-function determinant. This constitutes the first complete demonstration of RMT behaviour for all orders of correlation in a simple, deterministic model.

[1]  J. Keating The cat maps: quantum mechanics and classical motion , 1991 .

[2]  P. Sarnak,et al.  Number variance for arithmetic hyperbolic surfaces , 1994 .

[3]  M. Gutzwiller,et al.  Periodic Orbits and Classical Quantization Conditions , 1971 .

[4]  E. B. Bogomolnyi,et al.  Random matrix theory and the Riemann zeros. I. Three- and four-point correlations , 1995 .

[5]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[6]  A. Odlyzko On the distribution of spacings between zeros of the zeta function , 1987 .

[7]  J. Hannay,et al.  Periodic orbits and a correlation function for the semiclassical density of states , 1984 .

[8]  M. V. Berry,et al.  Riemann''s zeta function: A model for quantum chaos? Quantum Chaos and Statistical Nuclear Physics ( , 1986 .

[9]  M. Berry,et al.  Semiclassical theory of spectral rigidity , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  Dennis A. Hejhal,et al.  On the triple correlation of zeros of the zeta function , 1994 .

[11]  T. Seligman,et al.  Quantum Chaos and Statistical Nuclear Physics , 1986 .

[12]  J. Littlewood,et al.  Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes , 1923 .

[13]  F. Leyvraz,et al.  Distribution of eigenvalues for the modular group , 1995 .

[14]  Oriol Bohigas,et al.  Spectral properties of the Laplacian and random matrix theories , 1984 .

[15]  Statistical properties of the zeros of zeta functions-beyond the Riemann case , 1994, chao-dyn/9409004.

[16]  Lord Cherwell NOTE ON THE DISTRIBUTION OF THE INTERVALS BETWEEN PRIME NUMBERS , 1946 .

[17]  Kitaev,et al.  Correlations in the actions of periodic orbits derived from quantum chaos. , 1993, Physical review letters.

[18]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[19]  Donald E. Knuth,et al.  The art of computer programming: V.1.: Fundamental algorithms , 1997 .

[20]  J. Keating The semiclassical sum rule and Riemann's zeta-function , 1991 .

[21]  Pandey,et al.  Higher-order correlations in spectra of complex systems. , 1985, Physical review letters.

[22]  J. Keating The Riemann Zeta-Function and Quantum Chaology , 1993 .

[23]  M. Berry The Bakerian Lecture, 1987. Quantum chaology , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  M. Berry Semiclassical formula for the number variance of the Riemann zeros , 1988 .