Analyzing the statistical features of CIXL2 crossover offspring

We cannot deny the effort that the scientific community is devoting to the explanation of the features of the crossover operator of real-coded genetic algorithms and its effect over the evolutive process. This paper is another step in that direction, we analyze the behavior of the Confidence Interval Based Crossover using L2 Norm (CIXL2). This crossover is based on the learning of the statistical features of localization and dispersion of the best individuals of the population. The crossover obtains, by means of a L2 norm, the estimators of the parameters of localization and dispersion of the distributions of the fittest individuals. From this estimation three virtual parents are created using the localization parameter and the lower and upper bounds of the bilateral confidence intervals of the gene values of the best individuals of the population. This paper studies the statistical features of the offspring generated by this crossover and corroborates this study showing the behavior of the crossover in a set of test functions.

[1]  Hajime Kita,et al.  A Comparison Study of Self-Adaptation in Evolution Strategies and Real-Coded Genetic Algorithms , 2001, Evolutionary Computation.

[2]  Francisco Herrera,et al.  Gradual distributed real-coded genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[3]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[4]  César Hervás-Martínez,et al.  Genetic algorithms with crossover based on confidence interval as an alternative to traditional nonlinear regression methods , 2001, ESANN.

[5]  E. Herrera‐Viedma,et al.  Fuzzy Tools to Improve Genetic Algorithms Fuzzy Tools to Improve Genetic Algorithms 1 , 1994 .

[6]  S. Kobayashi,et al.  Theoretical analysis of the unimodal normal distribution crossover for real-coded genetic algorithms , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[7]  Thomas Bäck,et al.  Empirical Investigation of Multiparent Recombination Operators in Evolution Strategies , 1997, Evolutionary Computation.

[8]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[9]  Domingo Ortíz Boyer Operadores de cruce basados en intervalos de confianza en algoritmos genéticos con codificación real , 2001 .

[10]  Kalyanmoy Deb,et al.  On self-adaptive features in real-parameter evolutionary algorithms , 2001, IEEE Trans. Evol. Comput..

[11]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[12]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[13]  César Hervás-Martínez,et al.  Crossover Operator Effect in Function Optimization with Constraints , 2002, PPSN.

[14]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[15]  Francisco Herrera,et al.  Tuning fuzzy logic controllers by genetic algorithms , 1995, Int. J. Approx. Reason..

[16]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[17]  Nicholas J. Radcliffe,et al.  Equivalence Class Analysis of Genetic Algorithms , 1991, Complex Syst..

[18]  Maurice G. Kendall,et al.  Inference and relationship , 1979 .

[19]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[20]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[21]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..