Compact variable-temperature scanning force microscope.

A compact design for a cryogenic variable-temperature scanning force microscope using a fiber-optic interferometer to measure cantilever deflection is presented. The tip-sample coarse approach and the lateral tip positioning are performed by piezoelectric positioners in situ. The microscope has been operated at temperatures between 6 and 300 K. It is designed to fit into an 8 T superconducting magnet with the field applied in the out-of-plane direction. The results of scanning in various modes are demonstrated, showing contrast based on magnetic field gradients or surface potentials.

[1]  J. C. Davis,et al.  3He refrigerator based very low temperature scanning tunneling microscope , 1999 .

[2]  Paul K. Hansma,et al.  Atomic force microscopy of biological samples at low temperature , 1991 .

[3]  G. Binnig,et al.  True Atomic Resolution by Atomic Force Microscopy Through Repulsive and Attractive Forces , 1993, Science.

[4]  M. Tortonese,et al.  Low temperature magnetic force microscope utilizing a piezoresistive cantilever , 1994 .

[5]  D. Pelekhov,et al.  Atomic force microscope for operation in high magnetic fields at millikelvin temperatures , 1999 .

[6]  H. Güntherodt,et al.  Low temperature magnetic force microscopy , 1993 .

[7]  H. Kumar Wickramasinghe,et al.  High‐resolution capacitance measurement and potentiometry by force microscopy , 1988 .

[8]  Daniel Rugar,et al.  Sub-attonewton force detection at millikelvin temperatures , 2001 .

[9]  R. Wiesendanger,et al.  A scanning force microscope with atomic resolution in ultrahigh vacuum and at low temperatures , 1998 .

[10]  P. Grutter,et al.  Cryogenic magnetic force microscope , 2000 .

[11]  Focused ion beam deposition of Co$_{71}$Cr$_{17}$Pt$_{12}$ and Ni$_{80}$Fe$_{20}$ on tips for magnetic force microscopy , 2006 .

[12]  D. F. Ogletree,et al.  A variable temperature ultrahigh vacuum atomic force microscope , 1995 .

[13]  D. Abraham,et al.  High resolution atomic force microscopy potentiometry , 1991 .

[14]  H. Takagi,et al.  Crystal structure and magnetic properties of hexagonal RMnO3 (R = Y, Lu, and Sc) and the effect of doping , 2002 .

[15]  Y. Martin,et al.  Magnetic imaging by ‘‘force microscopy’’ with 1000 Å resolution , 1987 .

[16]  H. Güntherodt,et al.  A low temperature ultrahigh vaccum scanning force microscope , 1999 .

[17]  K. Temst,et al.  Low temperature magnetic force microscopy with enhanced sensitivity based on piezoresistive detection , 2000 .

[18]  J. Chae,et al.  Versatile low-temperature atomic force microscope with in situ piezomotor controls, charge-coupled device vision, and tip-gated transport measurement capability , 2005 .

[19]  D. Smith,et al.  Low-temperature force microscope with all-fiber interferometer , 1992 .

[20]  Z. Khim,et al.  Compact variable-temperature magnetic force microscope with optical access and lateral cantilever positioning , 2006 .

[21]  D. Rugar,et al.  Improved fiber‐optic interferometer for atomic force microscopy , 1989 .

[22]  Low-temperature high-resolution magnetic force microscopy using a quartz tuning fork , 2005, cond-mat/0505022.

[23]  Novel frictionless approach mechanism for a scanning tunneling microscope , 2003 .

[24]  R. Wiesendanger,et al.  A low-temperature ultrahigh vacuum scanning force microscope with a split-coil magnet , 2002 .

[25]  U. Hartmann,et al.  Fiber interferometer-based variable temperature scanning force microscope , 1997 .

[26]  K. Karrai,et al.  Low-temperature scanning probe microscopy of surface and subsurface charges , 2001 .

[27]  N. Amer,et al.  Novel optical approach to atomic force microscopy , 1988 .