Vortex dynamics of the full time‐dependent Ginzburg‐Landau equations
暂无分享,去创建一个
[1] Sylvia Serfaty,et al. Global minimizers for the Ginzburg–Landau functional below the first critical magnetic field , 2000 .
[2] F. Lin,et al. Evolution of harmonic maps with Dirichlet boundary conditions , 1993 .
[3] Jacob Rubinstein,et al. Vortex dynamics in U(1) Ginzberg-Landau models , 1993 .
[4] Sylvia Serfaty,et al. Stable Configurations in Superconductivity: Uniqueness, Multiplicity, and Vortex‐Nucleation , 1999 .
[5] Petru Mironescu,et al. The behavior of a Ginzburg-Landau minimizer near its zeroes , 1996 .
[6] Sylvia Serfaty,et al. LOCAL MINIMIZERS FOR THE GINZBURG–LANDAU ENERGY NEAR CRITICAL MAGNETIC FIELD: PART II , 1999 .
[7] Halil Mete Soner,et al. Dynamics of Ginzburg‐Landau Vortices , 1998 .
[8] Qiang Du,et al. Global existence and uniqueness of solutions of the time-dependent ginzburg-landau model for superconductivity , 1994 .
[9] F. Lin. Static and moving vortices in Ginzburg-Landau theories , 1997 .
[10] Mariano Giaquinta,et al. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 , 1984 .
[11] K. Kitazawa,et al. Motion of vortices in superconductors , 1999, Nature.
[12] E. Abrahams,et al. Time variation of the Ginzburg--Landau order parameter , 1966 .
[13] Paul A. Pearce,et al. Yang-Baxter equations, conformal invariance and integrability in statistical mechanics and field theory : proceedings of a conference : Centre for Mathematical Analysis, Australian National University, Canberra, Australia, July 10-14, 1989 , 1990 .
[14] E Weinan,et al. Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity , 1994 .
[15] K. Maki,et al. FLUCTUATIONS OF THE ORDER PARAMETER IN TYPE-II SUPERCONDUCTORS. , 1967 .
[16] Qiang Du,et al. Ginzburg-Landau vortices: dynamics, pinning, and hysteresis , 1997 .
[17] L. Landau,et al. On the theory of superconductivity , 1955 .
[18] Hans G. Kaper,et al. Dynamics of the Ginzburg-Landau equations of superconductivity , 1998 .
[19] F. Lin. Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds , 1998 .
[20] F. Béthuel,et al. Vortices for a variational problem related to superconductivity , 1995 .
[21] John C. Neu,et al. Vortices in complex scalar fields , 1990 .
[22] Fanghua Lin,et al. Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .
[23] M. J. Stephen. Transport Equations for Superconductors , 1965 .
[24] Bascom S. Deaver,et al. Experimental Evidence for Quantized Flux in Superconducting Cylinders , 1961 .
[25] Shouhong Wang,et al. Time dependent Ginzburg-Landau equations of superconductivity , 1995 .
[26] Ginzburg-Landau dynamics with a time-dependent magnetic field , 1998 .
[27] P. D. Gennes,et al. Superconductivity of metals and alloys , 1966 .
[28] Machida,et al. Direct simulation of the time-dependent Ginzburg-Landau equation for type-II superconducting thin film: Vortex dynamics and V-I characteristics. , 1993, Physical review letters.
[29] M. Nabauer,et al. Experimental Proof of Magnetic Flux Quantization in a Superconducting Ring , 1961 .
[30] L. Cooper,et al. Microscopic theory of superconductivity , 1957 .
[31] Qiang Du,et al. High-Kappa Limits of the Time-Dependent Ginzburg-Landau Model , 1996, SIAM J. Appl. Math..
[32] Michael Struwe,et al. On the asymptotic behavior of minimizers of the Ginzburg-Landau model in $2$ dimensions , 1994, Differential and Integral Equations.