Flows Driven by Harmonic Forcing in Planetary Atmospheres and Cores

[1]  D. Cébron,et al.  Spontaneous generation of inertial waves from boundary turbulence in a librating sphere , 2013, Journal of Fluid Mechanics.

[2]  A. Sauret,et al.  Libration-induced mean flow in a spherical shell , 2012, Journal of Fluid Mechanics.

[3]  J. Aurnou,et al.  Experimental study of libration-driven zonal flows in non-axisymmetric containers , 2012, 1301.5303.

[4]  D. Cébron,et al.  Magnetohydrodynamic simulations of the elliptical instability in triaxial ellipsoids , 2012, 1309.1929.

[5]  J. Aurnou,et al.  Libration driven elliptical instability , 2012, 1206.3727.

[6]  S. L. Dizes,et al.  Fluid flows in a librating cylinder , 2012, 1202.4243.

[7]  C. Moutou,et al.  Elliptical instability in terrestrial planets and moons , 2011, 1203.1796.

[8]  M. Laneuville,et al.  An impact-driven dynamo for the early Moon , 2011, Nature.

[9]  X. Liao,et al.  On fluid motion in librating ellipsoids with moderate equatorial eccentricity , 2011, Journal of Fluid Mechanics.

[10]  P. Meunier,et al.  Tilt-over mode in a precessing triaxial ellipsoid , 2010, 1102.2500.

[11]  M. L. Bars,et al.  Experimental study of the interaction between convective and elliptical instabilities , 2010 .

[12]  M. L. Bars,et al.  Experimental and numerical study of mean zonal flows generated by librations of a rotating spherical cavity , 2010, Journal of Fluid Mechanics.

[13]  P. Maubert,et al.  Tidal instability in a rotating and differentially heated ellipsoidal shell , 2010, 1009.6094.

[14]  J. Leontini,et al.  A systematic numerical study of the tidal instability in a rotating triaxial ellipsoid , 2010, 1009.6093.

[15]  J. Eldredge,et al.  Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry , 2010 .

[16]  S. L. Dizes,et al.  Elliptical instability in rotating cylinders: liquid metal experiments under imposed magnetic field , 2010, Journal of Fluid Mechanics.

[17]  A. Tilgner,et al.  Experimental determination of zonal winds driven by tides. , 2010, Physical review letters.

[18]  F. Busse Mean zonal flows generated by librations of a rotating spherical cavity , 2010, Journal of Fluid Mechanics.

[19]  P. L. Gal,et al.  On the effects of an imposed magnetic field on the elliptical instability in rotating spheroids , 2009 .

[20]  Johannes Wicht,et al.  An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans , 2009 .

[21]  C. Moutou,et al.  Magnetic cycles of the planet-hosting star τ Bootis , 2008, 0802.1584.

[22]  S. L. Dizes,et al.  Coriolis effects on the elliptical instability in cylindrical and spherical rotating containers , 2007, Journal of Fluid Mechanics.

[23]  R. Jurgens,et al.  Large Longitude Libration of Mercury Reveals a Molten Core , 2007, Science.

[24]  D. Lin,et al.  Tidal Dissipation in Rotating Solar-Type Stars , 2007, astro-ph/0702492.

[25]  S. L. Dizes,et al.  Thermo-elliptical instability in a rotating cylindrical shell , 2006, Journal of Fluid Mechanics.

[26]  S. L. Dizes,et al.  Magnetic field induced by elliptical instability in a rotating spheroid , 2006 .

[27]  Jonathan Aurnou,et al.  Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model , 2005, Nature.

[28]  D. Lin,et al.  Tidal Dissipation in Rotating Giant Planets , 2003, astro-ph/0310218.

[29]  D. Jault,et al.  Experimental evidence of non-linear resonance effects between retrograde precession and the tilt-over mode within a spheroid , 2003 .

[30]  R. Kerswell,et al.  Tidal instability as the source for Io's magnetic signature , 1998 .

[31]  R. Kerswell Upper bounds on the energy dissipation in turbulent precession , 1996, Journal of Fluid Mechanics.

[32]  Paul H. Roberts,et al.  A three-dimensional self-consistent computer simulation of a geomagnetic field reversal , 1995, Nature.

[33]  M. Rieutord Linear theory of rotating fluids using spherical harmonics part II, time-periodic flows , 1991 .

[34]  W. Malkus An experimental study of global instabilities due to the tidal (elliptical) distortion of a rotating elastic cylinder , 1989 .

[35]  D. E. Smylie,et al.  Can Precession Power the Geomagnetic Dynamo , 1975 .

[36]  Friedrich H. Busse,et al.  Thermal instabilities in rapidly rotating systems , 1970, Journal of Fluid Mechanics.

[37]  A. Toomre,et al.  Axisymmetric inertial oscillations of a fluid in a rotating spherical container , 1969, Journal of Fluid Mechanics.

[38]  W. Malkus,et al.  Precession of the Earth as the Cause of Geomagnetism , 1968, Science.

[39]  W. Malkus,et al.  Precessional torques as the cause of geomagnetism , 1963 .

[40]  M. Rieutord,et al.  Tidal instability in stellar and planetary binary systems , 2010 .

[41]  E. Spiegel Convection in Stars I. Basic Boussinesq Convection , 1971 .