Interaction of Mercury with the Solar Wind

Abstract We present the structure of the hermean magnetosphere obtained by a global three-dimensional MHD simulation. The magnetic field of Mercury is strong enough to form a permanent magnetosphere under typical solar wind conditions. Mercury does not have a substantial atmosphere or ionosphere which makes the magnetosphere unique in the solar system. We study in detail the hermean magnetosphere for the typical solar wind parameters at perihelion and the nominal Parker spiral interplanetary magnetic field (IMF). Although the magnetosphere of Mercury is qualitatively similar to Earth's magnetosphere, its much smaller size results in many quantitative differences. For example, the magnetic field lines of Mercury are closed only for latitudes less than ≈50°, while for Earth the similar latitude will be ≈75°. We find that a direct interaction of the solar wind with the surface of the planet and the formation of a “bald” subsolar spot become possible if the solar wind speed is increased by a factor of 2.5 of if density is increased by a factor of 9 as compared with the nominal values. We present the results of our simulation for this case a well, although our conclusion is that direct interaction of Mercury with the solar wind is a rare phenomenon.

[1]  A. Roux,et al.  Measurements of a.c. magnetic fields and currents in the Hermean magnetosphere , 1997 .

[2]  G. Siscoe,et al.  Open geometry of the magnetotail cross section , 1998 .

[3]  G. Siscoe,et al.  Observations at the planet Mercury by the plasma electron experiment, Mariner 10 , 1976 .

[4]  S. Krimigis,et al.  Magnetosphere, Exosphere, and Surface of Mercury , 1987 .

[5]  D. Summers,et al.  Formation of power‐law energy spectra in space plasmas by stochastic acceleration due to whistler‐mode waves , 1998, physics/9810049.

[6]  M. Ross,et al.  Mercury's thermal history and the generation of its magnetic field , 1988 .

[7]  G. Siscoe,et al.  Variations in the solar wind stand‐off distance at Mercury , 1975 .

[8]  Kenneth G. Powell,et al.  Three‐dimensional multiscale MHD model of cometary plasma environments , 1996 .

[9]  Y. Whang Magnetospheric magnetic field of Mercury , 1977 .

[10]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[11]  J. Dungey Interplanetary Magnetic Field and the Auroral Zones , 1961 .

[12]  N. Ness,et al.  Substorms on Mercury , 1975 .

[13]  K. Glassmeier,et al.  Concerning field line resonances in Mercury's magnetosphere , 1999 .

[14]  J. Eraker,et al.  Acceleration of charged particles in Mercury's magnetosphere , 1986 .

[15]  Philip L. Roe,et al.  Heliosphere in the magnetized local interstellar medium' Results of a three-dimensional MHD , 1998 .

[16]  Kenneth G. Powell,et al.  AN APPROXIMATE RIEMANN SOLVER FOR MAGNETOHYDRODYNAMICS (That Works in More than One Dimension) , 1994 .

[17]  S. Wing,et al.  A new magnetic coordinate system for conjugate studies at high latitudes , 1989 .

[18]  Donald M. Hunten,et al.  The Mercury atmosphere , 1988 .

[19]  N. Ness,et al.  The magnetic field of Mercury, 1 , 1975 .

[20]  A. Cameron,et al.  Elements of magnetogasdynamics , 1967 .

[21]  S. Suess,et al.  Mercury: Magnetospheric processes and the atmospheric supply and loss rates , 1981 .

[22]  K. Glassmeier The Hermean magnetosphere and its ionosphere-magnetosphere coupling , 1997 .

[23]  L. L. Hood,et al.  Inhibition of solar wind impingement on Mercury by planetary induction currents , 1979 .

[24]  S. Christon A comparison of the Mercury and Earth magnetospheres: Electron measurements and substorm time scales , 1987 .

[25]  T. H. Morgan,et al.  Potassium in the atmosphere of Mercury , 1986 .

[26]  R. Grard Photoemission on the surface of Mercury and related electrical phenomena , 1997 .

[27]  G. Siscoe,et al.  The Magnetospheric Sash and the Cross‐Tail S , 1998 .

[28]  D. L. De Zeeuw,et al.  Interaction of the Saturnian magnetosphere with Titan: Results of a three‐dimensional MHD simulation , 1999 .

[29]  Kenneth G. Powell,et al.  An adaptively-refined Cartesian mesh solver for the Euler equations , 1991 .

[30]  W. Ip The sodium exosphere and magnetosphere of Mercury , 1986 .

[31]  T. I. Gombosia,et al.  A model of solar wind ± magnetosphere ± ionosphere coupling for due northward IMF , 1999 .

[32]  K. Powell,et al.  A model of solar wind–magnetosphere–ionosphere coupling for due northward IMF , 2000 .

[33]  C. Russell,et al.  Disturbances in Mercury's magnetosphere: Are the Mariner 10 “substorms” simply driven? , 1998 .

[34]  Y. Whang Magnetosphere of Mercury , 1975 .

[35]  James A. Slavin,et al.  The effect of erosion on the solar wind stand-off distance at Mercury , 1979 .

[36]  Kenneth G. Powell,et al.  A New Axisymmetric MHD Model of the Interaction of the Solar Wind with Venus , 1996 .

[37]  K. Powell,et al.  Io's plasma environment during the Galileo flyby: Global three‐dimensional MHD modeling with adaptive mesh refinement , 1998 .

[38]  James A. Slavin,et al.  Mariner 10 observations of field-aligned currents at Mercury , 1997 .

[39]  A. L. Broadfoot,et al.  Mariner 10 - Mercury atmosphere , 1976 .

[40]  D. B. Beard,et al.  The magnetic field of Mercury , 1977 .

[41]  R. Steiger,et al.  The Heliosphere in the Local Interstellar Medium , 1996 .

[42]  W. Ip On the surface sputtering effects of magnetospheric charged particles at Mercury , 1993 .