A simple and efficient solar cell parameter extraction method from a single current-voltage curve

In this work, a simple and efficient method for the extraction of all the parameters of a solar cell from a single current-voltage (I-V) curve under the constant illumination level is proposed. With the help of the Lambert W function, the explicit analytic expression for I is obtained. By reducing the number of the parameters, the expression for I only depends on the ideality factor n, the series resistance Rs, and the shunt resistance Rsh. This analytic expression is directly used to fit the experimental data and extract the device parameters. This simple solar cell parameter extraction method can be directly applied for all kinds of solar cells whose I-V characteristics follow the single-diode model. The parameters of various solar devices including silicon solar cells, silicon solar modules, dye-sensitized solar cells, and organic solar cells with standalone, tandem, and multi-junction structures have been successfully extracted by using our proposed method.

[1]  A. Kapoor,et al.  A new approach to study organic solar cell using Lambert W-function , 2005 .

[2]  E. Radziemska Dark I–U–T measurements of single crystalline silicon solar cells , 2005 .

[3]  Christoph J. Brabec,et al.  Simulation of light intensity dependent current characteristics of polymer solar cells , 2004 .

[4]  T. Fuyuki,et al.  Analysis of multicrystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration , 2007 .

[5]  R. J. Handy Theoretical analysis of the series resistance of a solar cell , 1967 .

[6]  M. Chegaar,et al.  A new method for evaluating illuminated solar cell parameters , 2001 .

[7]  Jin-lei Ding,et al.  A new method to determine the optimum load of a real solar cell using the Lambert W-function , 2008 .

[8]  J. Shewchun,et al.  A better approach to the evaluation of the series resistance of solar cells , 1979 .

[9]  Mark A. Ratner,et al.  Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance , 2010 .

[10]  A. Mette,et al.  A review and comparison of different methods to determine the series resistance of solar cells , 2007 .

[11]  A. Kaminski,et al.  I–V methods to extract junction parameters with special emphasis on low series resistance , 1999 .

[12]  M. Wolf,et al.  SERIES RESISTANCE EFFECTS ON SOLAR CELL MEASUREMENTS , 1963 .

[13]  Tatsuo Mori,et al.  Equivalent Circuit Analysis of Dye-Sensitized Solar Cell by Using One-Diode Model: Effect of Carboxylic Acid Treatment of TiO2 Electrode , 2006 .

[14]  G. Araújo,et al.  Determination of the two-exponential solar cell equation parameters from empirical data , 1982 .

[15]  Wolfgang R. Fahrner,et al.  Dark I–V–T measurements and characteristics of (n) a-Si/(p) c-Si heterojunction solar cells , 2001 .

[16]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[17]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[18]  Stephen R. Forrest,et al.  High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters , 2002 .

[19]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[20]  A. Ortiz-Conde,et al.  Extraction of non-ideal junction model parameters from the explicit analytic solutions of its I–V characteristics , 2005 .

[21]  M. Niwano,et al.  An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic , 2008 .

[22]  P. Mialhe,et al.  Simple parameter extraction method for illuminated solar cells , 2006 .

[23]  B. Mazhari,et al.  An improved solar cell circuit model for organic solar cells , 2006 .