Variance Reduction Techniques in Monte Carlo Methods

Monte Carlo methods are simulation algorithms to estimate a numerical quantity in a statistical model of a real system. These algorithms are executed by computer programs. Variance reduction techniques (VRT) are needed, even though computer speed has been increasing dramatically, ever since the introduction of computers. This increased computer power has stimulated simulation analysts to develop ever more realistic models, so that the net result has not been faster execution of simulation experiments; e.g., some modern simulation models need hours or days for a single ’run’ (one replication of one scenario or combination of simulation input values). Moreover there are some simulation models that represent rare events which have extremely small probabilities of occurrence), so even modern computer would take ’for ever’ (centuries) to execute a single run - were it not that special VRT can reduce theses excessively long runtimes to practical magnitudes.

[1]  Reuven Y. Rubinstein,et al.  Efficiency of Multivariate Control Variates in Monte Carlo Simulation , 1985, Oper. Res..

[2]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[3]  Dirk P. Kroese,et al.  Cross‐Entropy Method , 2011 .

[4]  Peter C. Bell,et al.  Visual Interactive Modeling in Industry: Results from a Survey of Visual Interactive Model Builders , 1989 .

[5]  Paul Glasserman,et al.  Multilevel Splitting for Estimating Rare Event Probabilities , 1999, Oper. Res..

[6]  Gerardo Rubino,et al.  Rare Event Simulation using Monte Carlo Methods , 2009 .

[7]  Ad Ridder Asymptotic optimality of the cross-entropy method for Markov chain problems , 2010, ICCS.

[8]  R. Rubinstein Randomized Algorithms with Splitting: Why the Classic Randomized Algorithms Do Not Work and How to Make them Work , 2010 .

[9]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[10]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[11]  Dirk P. Kroese,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning , 2004 .

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  P. Dupuis,et al.  Splitting for rare event simulation : A large deviation approach to design and analysis , 2007, 0711.2037.

[14]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1991, Discret. Comput. Geom..

[15]  P. Shahabuddin,et al.  Chapter 11 Rare-Event Simulation Techniques: An Introduction and Recent Advances , 2006, Simulation.

[16]  Wheyming Tina Song,et al.  A five-class variance swapping rule for simulation experiments: A correlated-blocks design , 2007 .

[17]  P. Dupuis,et al.  Dynamic importance sampling for queueing networks , 2007, 0710.4389.

[18]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[19]  S. Juneja,et al.  Rare-event Simulation Techniques : An Introduction and Recent Advances , 2006 .

[20]  C. Lemieux,et al.  Chapter 12 Quasi-Random Number Techniques , 2006, Simulation.

[21]  P. L'Ecuyer,et al.  Uniform random number generators , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[22]  Pieter-Tjerk de Boer,et al.  Adaptive state- dependent importance sampling simulation of markovian queueing networks , 2002, Eur. Trans. Telecommun..

[23]  Bruce W. Weide,et al.  Optimal Expected-Time Algorithms for Closest Point Problems , 1980, TOMS.

[24]  Bruno Tuffin,et al.  Rare events, splitting, and quasi-Monte Carlo , 2007, TOMC.

[25]  Lawrence Bodin,et al.  Twenty Years of Routing and Scheduling , 1990, Oper. Res..

[26]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[27]  Joakim Nivre AN EFFICIENT ALGORITHM , 2003 .

[28]  Christopher Vyn Jones,et al.  Visualization and Optimization , 1997 .

[29]  Ad Ridder,et al.  The cross-entropy method with patching for rare-event simulation of large Markov chains , 2010, Eur. J. Oper. Res..

[30]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[31]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[32]  Raimund Seidel,et al.  Constructing Arrangements of Lines and Hyperplanes with Applications , 1986, SIAM J. Comput..

[33]  Peter W. Glynn,et al.  Asymptotic robustness of estimators in rare-event simulation , 2007, TOMC.

[34]  Klaus Weihrauch,et al.  The computational complexity of some julia sets , 2002, STOC '03.

[35]  Osman Balci,et al.  Verification, validation, and accreditation , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[36]  Jack P. C. Kleijnen Design and Analysis of Simulation Experiments , 2007 .

[37]  Stephen E. Chick,et al.  Economic Analysis of Simulation Selection Problems , 2009, Manag. Sci..

[38]  Xi Chen,et al.  The effects of common random numbers on stochastic kriging metamodels , 2012, TOMC.

[39]  Thomas Taimre,et al.  State-dependent importance sampling schemes via minimum cross-entropy , 2011, Ann. Oper. Res..

[40]  Viatcheslav B. Melas On the efficiency of the splitting and roulette approach for sensitivity analysis , 1997, WSC '97.

[41]  Pankaj K. Agarwal Intersection and decomposition algorithms for planar arrangements , 1991 .

[42]  Paul Dupuis,et al.  Subsolutions of an Isaacs Equation and Efficient Schemes for Importance Sampling , 2005, Math. Oper. Res..

[43]  Dirk P. Kroese,et al.  An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting , 2008 .

[44]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[45]  Osman Balci,et al.  Verification, Validation, and Testing , 2007 .

[46]  José Villén-Altamirano,et al.  RESTART: a straightforward method for fast simulation of rare events , 1994, Proceedings of Winter Simulation Conference.

[47]  Peter C. Bell,et al.  Visual interactive modelling: The past, the present, and the prospects , 1991 .

[48]  Christopher V. Jones Animated sensitivity Analysis , 1992, Computer Science and Operations Research.

[49]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[50]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[51]  Agnès Lagnoux,et al.  RARE EVENT SIMULATION , 2005, Probability in the Engineering and Informational Sciences.