A Linear Process-Algebraic Format for Probabilistic Systems with Data

This paper presents a novel linear process-algebraic format for probabilistic automata. The key ingredient is a symbolic transformation of probabilistic process algebra terms that incorporate data into this linear format while preserving strong probabilistic bisimulation. This generalises similar techniques for traditional process algebras with data, and — more importantly — treats data and data-dependent probabilistic choice in a fully symbolic manner, paving the way to the symbolic analysis of parameterised probabilistic systems.

[1]  Henrik Ejersbo Jensen,et al.  Reachability Analysis of Probabilistic Systems by Successive Refinements , 2001, PAPM-PROBMIV.

[2]  Joost-Pieter Katoen,et al.  Three-Valued Abstraction for Continuous-Time Markov Chains , 2007, CAV.

[3]  Mariëlle Stoelinga,et al.  Alea jacta est : verification of probabilistic, real-time and parametric systems , 2002 .

[4]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[5]  Marta Z. Kwiatkowska,et al.  Abstraction Refinement for Probabilistic Software , 2008, VMCAI.

[6]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[7]  Jaco van de Pol,et al.  An Abstract Interpretation Toolkit for muCRL , 2005, Electron. Notes Theor. Comput. Sci..

[8]  Jan Friso Groote,et al.  Invariants in Process Algebra with Data , 1993, CONCUR.

[9]  Jaco van de Pol,et al.  Symbolic Reachability for Process Algebras with Recursive Data Types , 2008, ICTAC.

[10]  Wan Fokkink,et al.  Variations on Itai-Rodeh Leader Election for Anonymous Rings and their Analysis in PRISM , 2006, J. Univers. Comput. Sci..

[11]  Thomas A. Henzinger,et al.  Sliding Window Abstraction for Infinite Markov Chains , 2009, CAV.

[12]  Lijun Zhang,et al.  Probabilistic CEGAR , 2008, CAV.

[13]  Jan Friso Groote,et al.  Focus points and convergent process operators: a proof strategy for protocol verification , 2001, J. Log. Algebraic Methods Program..

[14]  Jan Friso Groote,et al.  The Syntax and Semantics of mCRL , 1994 .

[15]  Christel Baier,et al.  PROBMELA: a modeling language for communicating probabilistic processes , 2004, Proceedings. Second ACM and IEEE International Conference on Formal Methods and Models for Co-Design, 2004. MEMOCODE '04..

[16]  Jan Friso Groote,et al.  Computer assisted manipulation of algebraic process specifications , 2002, SIGP.

[17]  Ys Yaroslav Usenko,et al.  Linearization in muCRL , 2002 .

[18]  Jaco van de Pol,et al.  A Database Approach to Distributed State-Space Generation , 2008, J. Log. Comput..

[19]  Jaco van de Pol,et al.  State Space Reduction by Proving Confluence , 2002, CAV.

[20]  Marta Z. Kwiatkowska,et al.  Game-based Abstraction for Markov Decision Processes , 2006, Third International Conference on the Quantitative Evaluation of Systems - (QEST'06).

[21]  Jan Friso Groote,et al.  The Syntax and Semantics of μCRL , 1995 .

[22]  Jan Friso Groote,et al.  Model-checking processes with data , 2005, Sci. Comput. Program..

[23]  Wan Fokkink,et al.  Cones and foci: A mechanical framework for protocol verification , 2006, Formal Methods Syst. Des..

[24]  Jaco van de Pol,et al.  State Space Reduction of Linear Processes Using Control Flow Reconstruction , 2009, ATVA.

[25]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[26]  Holger Hermanns,et al.  MODEST: A Compositional Modeling Formalism for Hard and Softly Timed Systems , 2006, IEEE Transactions on Software Engineering.

[27]  Jaco van de Pol,et al.  An abstract interpretation toolkit for μCRL , 2005, Formal Methods Syst. Des..

[28]  Luca de Alfaro,et al.  Magnifying-Lens Abstraction for Markov Decision Processes , 2007, CAV.

[29]  Alban Ponse,et al.  Translating a process algebra with symbolic data values to linear format , 1995 .

[30]  Annabelle McIver,et al.  Probabilistic guarded commands mechanized in HOL , 2005, Theor. Comput. Sci..

[31]  Jan Friso Groote,et al.  Verification of Temporal Properties of Processes in a Setting with Data , 1998, AMAST.