Quantification of L-band InSAR coherence over volcanic areas using LiDAR and in situ measurements

Abstract Interferometric Synthetic Aperture Radar (InSAR) is a powerful tool to monitor large-scale ground deformation at active volcanoes. However, vegetation and pyroclastic deposits degrade the radar coherence and therefore the measurement of 3-D surface displacements. In this article, we explore the complementarity between ALOS–PALSAR coherence images, airborne LiDAR data and in situ measurements acquired over the Piton de La Fournaise volcano (Reunion Island, France) to determine the sources of errors that may affect repeat-pass InSAR measurements. We investigate three types of surfaces: terrains covered with vegetation, lava flows (a′a, pahoehoe or slabby pahoehoe lava flows) and pyroclastic deposits (lapilli). To explain the loss of coherence observed over the Dolomieu crater between 2008 and 2009, we first use laser altimetry data to map topographic variations. The LiDAR intensity, which depends on surface reflectance, also provides ancillary information about the potential sources of coherence loss. In addition, surface roughness and rock dielectric properties of each terrain have been determined in situ to better understand how electromagnetic waves interact with such media: rough and porous surfaces, such as the a′a lava flows, produce a higher coherence loss than smoother surfaces, such as the pahoehoe lava flows. Variations in dielectric properties suggest a higher penetration depth in pyroclasts than in lava flows at L-band frequency. Decorrelation over the lapilli is hence mainly caused by volumetric effects. Finally, a map of LAI ( Leaf Area Index ) produced using SPOT 5 imagery allows us to quantify the effect of vegetation density: radar coherence is negatively correlated with LAI and is unreliable for values higher than 7.5.

[1]  K. Clint Slatton,et al.  Improved accuracy for interferometric radar images using polarimetric radar and laser altimetry data , 2000, 4th IEEE Southwest Symposium on Image Analysis and Interpretation.

[2]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[3]  A. Malinverno A simple method to estimate the fractal dimension of a self‐affine series , 1990 .

[4]  Xiaoqing Pi,et al.  Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar , 2011 .

[5]  P. Gillot,et al.  Eruptive history of the Piton de la Fournaise volcano, Reunion Island, Indian Ocean , 1989 .

[6]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[7]  J. Russell,et al.  Characterization of volcanic deposits with ground-penetrating radar , 1997 .

[8]  R. Knight,et al.  Dielectric constant as a predictor of porosity in dry volcanic rocks , 1999 .

[9]  P. Sterzai,et al.  Radiometric correction in laser scanning , 2006 .

[10]  Dominique Courault,et al.  Testing roughness indices to estimate soil surface roughness changes due to simulated rainfall. , 1990 .

[11]  Ross Nelson,et al.  Exploring LiDAR–RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR , 2007 .

[12]  Richard K. Moore,et al.  Radar remote sensing and surface scattering and emission theory , 1986 .

[13]  John R. Elliott,et al.  Quantitative morphology, recent evolution, and future activity of the Kameni Islands volcano, Santorini, Greece , 2006 .

[14]  M. Nilsson Estimation of tree heights and stand volume using an airborne lidar system , 1996 .

[15]  J. Ulrichs,et al.  Electrical properties of rocks and their significance for lunar radar observations , 1969 .

[16]  M. Pareschi,et al.  The changing face of Mount Etna's summit area documented with Lidar technology , 2008 .

[17]  S. Jacquemoud,et al.  An advanced photogrammetric method to measure surface roughness: Application to volcanic terrains in the Piton de la Fournaise, Reunion Island , 2013 .

[18]  D. Harding,et al.  SOME ALGORITHMS FOR VIRTUAL DEFORESTATION (VDF) OF LIDAR TOPOGRAPHIC SURVEY DATA , 2001 .

[19]  Philippe Paillou,et al.  On Water Detection in the Martian Subsurface Using Sounding Radar , 2001 .

[20]  Meng Wei,et al.  Decorrelation of L-Band and C-Band Interferometry Over Vegetated Areas in California , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[21]  E. Weber Hoen,et al.  Penetration depths inferred from interferometric volume decorrelation observed over the Greenland Ice Sheet , 2000, IEEE Trans. Geosci. Remote. Sens..

[22]  M. Zribi,et al.  A new empirical model to retrieve soil moisture and roughness from C-band radar data , 2003 .

[23]  Maria Fabrizia Buongiorno,et al.  Spectral properties of volcanic materials from hyperspectral field and satellite data compared with LiDAR data at Mt. Etna , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[24]  Zhang Xiaohong,et al.  Analysis of systematic error influences on accuracy of airborne laser scanning altimetry , 2004 .

[25]  Manabu Watanabe,et al.  ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Tim Webster,et al.  Mapping subtle structures with light detection and ranging (LIDAR): flow units and phreatomagmatic rootless cones in the North Mountain Basalt, Nova Scotia , 2006 .

[27]  A. Chehbouni,et al.  Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices , 2006 .

[28]  D. Massonnet,et al.  Imaging with Synthetic Aperture Radar , 2008 .

[29]  N. Pfeifer,et al.  Correction of laser scanning intensity data: Data and model-driven approaches , 2007 .

[30]  M. Favalli,et al.  Lava flow identification and aging by means of lidar intensity: Mount Etna case , 2007 .

[31]  J. Swenson,et al.  A comparison of lidar, radar, and field measurements of canopy height in pine and hardwood forests of southeastern North America , 2009 .

[32]  T. Tadono,et al.  Interferometric capabilities of ALOS PALSAR and its utilization , 2006 .

[33]  T. Schenk,et al.  Airborne laser swath mapping of the summit of Erebus volcano, Antarctica: Applications to geological mapping of a volcano , 2008 .

[34]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: basic relations and formulas , 1999 .

[35]  Guoqing Sun,et al.  Forest biomass mapping from lidar and radar synergies , 2011 .

[36]  Sarah E. Kruse,et al.  Ground Penetrating Radar Imaging of Tephra Stratigraphy on Poás and Irazú Volcanoes, Costa Rica , 2010 .

[37]  Paul Siqueira,et al.  A survey of temporal decorrelation from spaceborne L-Band repeat-pass InSAR , 2011 .

[38]  Patrick D. Johnson,et al.  Investigating RaDAR–LiDAR synergy in a North Carolina pine forest , 2007 .

[39]  Maria Teresa Pareschi,et al.  Best‐fit results from application of a thermo‐rheological model for channelized lava flow to high spatial resolution morphological data , 2007 .

[40]  Jan Askne,et al.  Coherence Characteristics of Radar Signals from Rough Soil , 2001 .

[41]  Aloysius Wehr,et al.  Airborne laser scanning—an introduction and overview , 1999 .

[42]  Pierre Briole,et al.  The deformation field of the August 2003 eruption at Piton de la Fournaise, Reunion Island, mapped by ASAR interferometry , 2004 .

[43]  J. B. Blair,et al.  Quantifying recent pyroclastic and lava flows at Arenal Volcano, Costa Rica, using medium‐footprint lidar , 2006 .

[44]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[45]  K. Clint Slatton,et al.  Fusing interferometric radar and laser altimeter data to estimate surface topography and vegetation heights , 2001, IEEE Trans. Geosci. Remote. Sens..

[46]  Zhong Lu,et al.  Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska , 1998 .

[47]  Maria Teresa Pareschi,et al.  Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data , 2005 .

[48]  T. Staudacher Field observations of the 2008 summit eruption at Piton de la Fournaise (Ile de La Réunion) and implications for the 2007 Dolomieu collapse , 2010 .

[49]  Richard K. Moore,et al.  Microwave Remote Sensing, Active and Passive , 1982 .

[50]  J. Welker,et al.  Modeling the effect of photosynthetic vegetation properties on the NDVI--LAI relationship. , 2006, Ecology.

[51]  George Vosselman,et al.  Two algorithms for extracting building models from raw laser altimetry data , 1999 .

[52]  Maria Teresa Pareschi,et al.  LIDAR strip adjustment: Application to volcanic areas , 2009 .

[53]  F. Carreño,et al.  Characterization of volcanic materials using ground penetrating radar: A case study at Teide volcano (Canary Islands, Spain) , 2006 .

[54]  Maria Teresa Pareschi,et al.  A LiDAR survey of Stromboli volcano (Italy): Digital elevation model-based geomorphology and intensity analysis , 2010 .

[55]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[56]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[57]  Didier Massonnet,et al.  Opening of an eruptive fissure and seaward displacement at Piton De La Fournaise Volcano measured by RADARSAT satellite radar interferometry , 1999 .

[58]  Richard M. Lucas,et al.  Enhanced Simulation of Radar Backscatter From Forests Using LiDAR and Optical Data , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Valérie Cayol,et al.  Finding realistic dike models from interferometric synthetic aperture radar data: The February 2000 eruption at Piton de la Fournaise , 2005 .