Mechanical guidance of cell migration: lessons from chemotaxis.

[1]  H. Harris Role of chemotaxis in inflammation. , 1954, Physiological reviews.

[2]  D. Murphy,et al.  Dynamic Distribution of Chemoattractant Receptors in Living Cells During Chemotaxis and Persistent Stimulation , 1997, Journal of Cell Biology.

[3]  C. Parent,et al.  A cell's sense of direction. , 1999, Science.

[4]  E. Evans,et al.  Strength of a weak bond connecting flexible polymer chains. , 1999, Biophysical journal.

[5]  M. Dembo,et al.  Cell movement is guided by the rigidity of the substrate. , 2000, Biophysical journal.

[6]  Richard A. Firtel,et al.  Spatial and Temporal Regulation of 3-Phosphoinositides by PI 3-Kinase and PTEN Mediates Chemotaxis , 2002, Cell.

[7]  Joyce Y. Wong,et al.  Directed Movement of Vascular Smooth Muscle Cells on Gradient-Compliant Hydrogels† , 2003 .

[8]  Joe Tien,et al.  Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus. , 2003, Journal of biomedical materials research. Part A.

[9]  A. Engler,et al.  Photopolymerization in Microfluidic Gradient Generators: Microscale Control of Substrate Compliance to Manipulate Cell Response , 2004 .

[10]  Micah Dembo,et al.  The dynamics and mechanics of endothelial cell spreading. , 2005, Biophysical journal.

[11]  W. Rappel,et al.  Dictyostelium discoideum chemotaxis: threshold for directed motion. , 2006, European journal of cell biology.

[12]  Natalie Andrew,et al.  Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions , 2007, Nature Cell Biology.

[13]  A. Mogilner,et al.  Model of polarization and bistability of cell fragments. , 2007, Biophysical journal.

[14]  R. Kay,et al.  Chemotaxis in the Absence of PIP3 Gradients , 2007, Current Biology.

[15]  D. Gilmour,et al.  The Chemokine SDF1a Coordinates Tissue Migration through the Spatially Restricted Activation of Cxcr7 and Cxcr4b , 2007, Current Biology.

[16]  Gaudenz Danuser,et al.  Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed , 2008, The Journal of cell biology.

[17]  Pablo A Iglesias,et al.  Navigating through models of chemotaxis. , 2008, Current opinion in cell biology.

[18]  A. Aman,et al.  Wnt/beta-catenin and Fgf signaling control collective cell migration by restricting chemokine receptor expression. , 2008, Developmental cell.

[19]  K. V. Van Vliet,et al.  Influence of finite thickness and stiffness on cellular adhesion-induced deformation of compliant substrata. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Erez Raz,et al.  Control of Chemokine-Guided Cell Migration by Ligand Sequestration , 2008, Cell.

[21]  David J Odde,et al.  Traction Dynamics of Filopodia on Compliant Substrates , 2008, Science.

[22]  Marion Ghibaudo,et al.  Traction forces and rigidity sensing regulate cell functions , 2008 .

[23]  C. Parent,et al.  Eukaryotic chemotaxis at a glance , 2008, Journal of Cell Science.

[24]  David A. Weitz,et al.  Physical forces during collective cell migration , 2009 .

[25]  Y. K. Cheung,et al.  Microscale control of stiffness in a cell-adhesive substrate using microfluidics-based lithography. , 2009, Angewandte Chemie.

[26]  Michael P. Sheetz,et al.  Stretching Single Talin Rod Molecules Activates Vinculin Binding , 2009, Science.

[27]  P. A. Dimilla,et al.  Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. , 2009, Biophysical journal.

[28]  Paul A. Janmey,et al.  Non-Linear Elasticity of Extracellular Matrices Enables Contractile Cells to Communicate Local Position and Orientation , 2009, PloS one.

[29]  J. Fredberg,et al.  Cell migration driven by cooperative substrate deformation patterns. , 2010, Physical review letters.

[30]  M. Parsons,et al.  Collective Chemotaxis Requires Contact-Dependent Cell Polarity , 2010, Developmental cell.

[31]  Dennis E Discher,et al.  How deeply cells feel: methods for thin gels , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  Xavier Trepat,et al.  Mechanosensing of substrate thickness. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Krishanu Saha,et al.  Surface creasing instability of soft polyacrylamide cell culture substrates. , 2010, Biophysical journal.

[34]  Pablo A Iglesias,et al.  Cells navigate with a local-excitation, global-inhibition-biased excitable network , 2010, Proceedings of the National Academy of Sciences.

[35]  E. Jorgensen,et al.  Membrane tension regulates motility by controlling lamellipodium organization , 2011, Proceedings of the National Academy of Sciences.

[36]  S. Kidoaki,et al.  Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels. , 2011, Biomaterials.

[37]  Beum Jun Kim,et al.  Microfluidics for Mammalian Cell Chemotaxis , 2011, Annals of Biomedical Engineering.

[38]  John S. Condeelis,et al.  Chemotaxis in cancer , 2011, Nature Reviews Cancer.

[39]  Adam J. Engler,et al.  Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate , 2011, PloS one.

[40]  J. Fredberg,et al.  Collective cell guidance by cooperative intercellular forces , 2010, Nature materials.

[41]  D. Weitz,et al.  Mechanical strain in actin networks regulates FilGAP and integrin binding to Filamin A , 2011, Nature.

[42]  Pere Roca-Cusachs,et al.  Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading , 2011, Proceedings of the National Academy of Sciences.

[43]  P. Friedl,et al.  Classifying collective cancer cell invasion , 2012, Nature Cell Biology.

[44]  Léa Trichet,et al.  Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness , 2012, Proceedings of the National Academy of Sciences.

[45]  G. Meacci,et al.  Cells test substrate rigidity by local contractions on submicrometer pillars , 2012, Proceedings of the National Academy of Sciences.

[46]  D. Discher,et al.  Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain , 2012, The Journal of cell biology.

[47]  Pere Roca-Cusachs,et al.  Finding the weakest link – exploring integrin-mediated mechanical molecular pathways , 2012, Journal of Cell Science.

[48]  Dan L. Sackett,et al.  Fabrication of Hydrogels with Steep Stiffness Gradients for Studying Cell Mechanical Response , 2012, PloS one.

[49]  Alexandra Jilkine,et al.  Membrane Tension Maintains Cell Polarity by Confining Signals to the Leading Edge during Neutrophil Migration , 2012, Cell.

[50]  Yu Suk Choi,et al.  The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices. , 2012, Biomaterials.

[51]  Douglas W DeSimone,et al.  A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. , 2012, Developmental cell.

[52]  Sergey V. Plotnikov,et al.  Force Fluctuations within Focal Adhesions Mediate ECM-Rigidity Sensing to Guide Directed Cell Migration , 2012, Cell.

[53]  D. G. T. Strange,et al.  Extracellular-matrix tethering regulates stem-cell fate. , 2012, Nature materials.

[54]  P. Rørth,et al.  Fellow travellers: emergent properties of collective cell migration , 2012, EMBO reports.

[55]  J. Brenton,et al.  Complex Stiffness Gradient Substrates for Studying Mechanotactic Cell Migration , 2012, Advanced materials.

[56]  A. Huttenlocher,et al.  Leukocyte migration from a fish eye's view , 2012, Journal of Cell Science.

[57]  D. Wilkinson,et al.  Chemokine and Fgf signalling act as opposing guidance cues in formation of the lateral line primordium , 2012, Development.

[58]  Michael Sixt,et al.  Interstitial Dendritic Cell Guidance by Haptotactic Chemokine Gradients , 2013, Science.

[59]  Yu Suk Choi,et al.  Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. , 2013, Biotechnology journal.