The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension

On the example of the famous Lorenz system, the difficulties and opportunities of reliable numerical analysis of chaotic dynamical systems are discussed in this article. For the Lorenz system, the boundaries of global stability are estimated and the difficulties of numerically studying the birth of self-excited and hidden attractors, caused by the loss of global stability, are discussed. The problem of reliable numerical computation of the finite-time Lyapunov dimension along the trajectories over large time intervals is discussed. Estimating the Lyapunov dimension of attractors via the Pyragas time-delayed feedback control technique and the Leonov method is demonstrated. Taking into account the problems of reliable numerical experiments in the context of the shadowing and hyperbolicity theories, experiments are carried out on small time intervals and for trajectories on a grid of initial points in the attractor’s basin of attraction.

[1]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[2]  G. Leonov Lyapunov Functions in the Global Analysis of Chaotic Systems , 2018, Ukrainian Mathematical Journal.

[3]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[4]  L. Chua,et al.  Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .

[5]  Anders Logg,et al.  A posteriori error analysis of round-off errors in the numerical solution of ordinary differential equations , 2015, Numerical Algorithms.

[6]  K. Palmer,et al.  Shadowing in Dynamical Systems: Theory and Applications , 2010 .

[7]  S. Liao,et al.  On the mathematically reliable long-term simulation of chaotic solutions of Lorenz equation in the interval [0,10000] , 2013, 1305.4222.

[8]  V. I. Arnol'd,et al.  Dynamical Systems V , 1994 .

[9]  Nikolay V. Kuznetsov,et al.  Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..

[10]  G. Leonov,et al.  Attraktorlokalisierung des Lorenz-Systems , 1987 .

[11]  Nikolay V. Kuznetsov,et al.  On differences and similarities in the analysis of Lorenz, Chen, and Lu systems , 2014, Appl. Math. Comput..

[12]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[13]  O. Rössler An equation for continuous chaos , 1976 .

[14]  P. Cvitanović,et al.  Periodic orbits as the skeleton classical and quantum chaos , 1991 .

[15]  Divakar Viswanath,et al.  The Lindstedt-Poincaré Technique as an Algorithm for Computing Periodic Orbits , 2001, SIAM Rev..

[16]  Guanrong Chen,et al.  Constructing an autonomous system with infinitely many chaotic attractors. , 2017, Chaos.

[17]  Celso Grebogi,et al.  Chaotic bursting at the onset of unstable dimension variability. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Celso Grebogi,et al.  Pseudo-Deterministic Chaotic Systems , 2003, Int. J. Bifurc. Chaos.

[19]  T. N. Mokaev,et al.  Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system , 2015, 1504.04723.

[20]  Marcello Lappa,et al.  Thermal Convection: Patterns, Evolution and Stability , 2009 .

[21]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[22]  Timothy D Sauer Shadowing breakdown and large errors in dynamical simulations of physical systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  J. Sprott Chaos and time-series analysis , 2001 .

[24]  Kenneth J. Palmer,et al.  Shadowing in Dynamical Systems , 2000 .

[25]  Andreas Amann,et al.  Analytical limitation for time-delayed feedback control in autonomous systems. , 2011, Physical review letters.

[26]  G. A. Leonov,et al.  Lyapunov dimension formula for the global attractor of the Lorenz system , 2015, Commun. Nonlinear Sci. Numer. Simul..

[27]  T. N. Mokaev,et al.  Numerical analysis of dynamical systems: unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension , 2018, Journal of Physics: Conference Series.

[28]  Guanrong Chen,et al.  On time-delayed feedback control of chaotic systems , 1999 .

[29]  Jon M. Nese,et al.  Calculated Attractor Dimensions for Low-Order Spectral Models , 1987 .

[30]  Nikolay V. Kuznetsov,et al.  Hidden Attractors on One Path: Glukhovsky-Dolzhansky, Lorenz, and Rabinovich Systems , 2017, Int. J. Bifurc. Chaos.

[31]  Gennady A. Leonov,et al.  Non-local methods for pendulum-like feedback systems , 1992 .

[32]  Nikolay V. Kuznetsov,et al.  Tutorial on dynamic analysis of the Costas loop , 2015, Annu. Rev. Control..

[33]  J C Sprott,et al.  Maximally complex simple attractors. , 2007, Chaos.

[35]  Grebogi,et al.  Shadowing of physical trajectories in chaotic dynamics: Containment and refinement. , 1990, Physical review letters.

[36]  Nikolay V. Kuznetsov,et al.  Visualization of Four Normal Size Limit Cycles in Two-Dimensional Polynomial Quadratic System , 2013 .

[37]  James A. Yorke,et al.  Rigorous verification of trajectories for the computer simulation of dynamical systems , 1991 .

[38]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[39]  G. G. Malinetskii,et al.  On calculating the dimension of strange attractors , 1990 .

[40]  V. Araújo,et al.  Singular-hyperbolic attractors are chaotic , 2005, math/0511352.

[41]  J. Yorke,et al.  Fractal Basin Boundaries, Long-Lived Chaotic Transients, And Unstable-Unstable Pair Bifurcation , 1983 .

[42]  Z. Galias,et al.  Computer assisted proof of chaos in the Lorenz equations , 1998 .

[43]  R. Temam,et al.  Local and Global Lyapunov exponents , 1991 .

[44]  Gennady A. Leonov,et al.  Shilnikov Chaos in Lorenz-like Systems , 2013, Int. J. Bifurc. Chaos.

[45]  R. A. Smith,et al.  Some applications of Hausdorff dimension inequalities for ordinary differential equations , 1986, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[46]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[47]  Ying-Cheng Lai,et al.  Transient Chaos: Complex Dynamics on Finite Time Scales , 2011 .

[48]  Julien Clinton Sprott,et al.  Improved Correlation Dimension Calculation , 2000, Int. J. Bifurc. Chaos.

[49]  Celso Grebogi,et al.  How long do numerical chaotic solutions remain valid , 1997 .

[50]  Nikolay V. Kuznetsov,et al.  Hold-In, Pull-In, and Lock-In Ranges of PLL Circuits: Rigorous Mathematical Definitions and Limitations of Classical Theory , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[51]  W. Tucker The Lorenz attractor exists , 1999 .

[52]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[53]  Brian A. Coomes,et al.  Rigorous computational shadowing of orbits of ordinary differential equations , 1995 .

[54]  Nikolay V. Kuznetsov,et al.  Hidden chaotic sets in a Hopfield neural system , 2017 .

[55]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[56]  Leon O. Chua,et al.  Scenario of the Birth of Hidden Attractors in the Chua Circuit , 2017, Int. J. Bifurc. Chaos.

[57]  Nikolay V. Kuznetsov,et al.  Hidden attractors localization in Chua circuit via the describing function method , 2017 .

[58]  Gennady A. Leonov,et al.  Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors , 1992 .

[59]  Lei Wang,et al.  A Note on Hidden Transient Chaos in the Lorenz System , 2017 .

[60]  Charles R. Doering,et al.  On the shape and dimension of the Lorenz attractor , 1995 .

[61]  V. Yakubovich,et al.  Stability of Stationary Sets in Control Systems With Discontinuous Nonlinearities , 2004, IEEE Transactions on Automatic Control.

[62]  Celso Grebogi,et al.  Unstable dimension variability: a source of nonhyperbolicity in chaotic systems , 1997 .

[63]  W. Haddad,et al.  Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach , 2008 .

[64]  Gennady A. Leonov,et al.  Lyapunov functions in the attractors dimension theory , 2012 .

[65]  G. Leonov,et al.  Hidden attractors in dynamical systems , 2016 .

[66]  E. Lorenz The local structure of a chaotic attractor in four dimensions , 1984 .

[67]  Roberto Benzi,et al.  On the multifractal nature of fully developed turbulence and chaotic systems , 1984 .

[68]  T. N. Mokaev,et al.  On lower-bound estimates of the Lyapunov dimension and topological entropy for the Rossler systems , 2019, IFAC-PapersOnLine.

[69]  N. Kuznetsov,et al.  The Lyapunov dimension and its estimation via the Leonov method , 2016, 1602.05410.

[70]  E.N. Rosenwasser,et al.  The birth of the global stability theory and the theory of hidden oscillations , 2020, 2020 European Control Conference (ECC).

[71]  Buncha Munmuangsaen,et al.  A hidden chaotic attractor in the classical Lorenz system , 2018 .

[72]  Celso Grebogi,et al.  Numerical orbits of chaotic processes represent true orbits , 1988 .

[73]  Mikhail I. Rabinovich,et al.  Stochastic self-oscillations and turbulence , 1978 .

[74]  Valentin Afraimovich,et al.  Origin and structure of the Lorenz attractor , 1977 .

[75]  Grebogi,et al.  Unstable dimension variability and synchronization of chaotic systems , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[76]  A. Logg,et al.  Quantifying the Computability of the Lorenz System Using a posteriori analysis , 2013 .

[77]  David Ruelle,et al.  The Lorenz attractor and the problem of turbulence , 1976 .

[78]  M. M. Shumafov,et al.  A short survey on Pyragas time-delay feedback stabilization and odd number limitation , 2015 .

[79]  G. A. Leonov,et al.  Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations , 2014, 1410.2016.

[80]  G. Leonov,et al.  Asymptotic behavior of solutions of Lorenz-like systems: Analytical results and computer error structures , 2017 .

[81]  Kestutis Pyragas Control of chaos via an unstable delayed feedback controller. , 2001, Physical review letters.

[82]  Alexander L. Fradkov,et al.  Adaptive tuning of feedback gain in time-delayed feedback control. , 2011, Chaos.

[83]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[84]  The harmonic balance method for finding approximate periodic solutions of the Lorenz system , 2019, Tambov University Reports. Series: Natural and Technical Sciences.

[85]  Roberto Barrio,et al.  A database of rigorous and high-precision periodic orbits of the Lorenz model , 2015, Comput. Phys. Commun..

[86]  Robin J. Evans,et al.  Control of chaos: Methods and applications in engineering, , 2005, Annu. Rev. Control..

[87]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[88]  N. Levinson,et al.  Transformation Theory of Non-Linear Differential Equations of the Second Order , 1944 .

[89]  Armin Fuchs,et al.  Nonlinear Dynamics in Complex Systems: Theory and Applications for the Life-, Neuro- and Natural Sciences , 2012 .

[90]  N. V. Kuznetsov,et al.  Hidden attractors in fundamental problems and engineering models. A short survey , 2015, 1510.04803.

[91]  S. E. Khaikin,et al.  Theory of Oscillators , 1966 .

[92]  Auerbach,et al.  Exploring chaotic motion through periodic orbits. , 1987, Physical review letters.

[93]  V. Arnold Dynamical systems V. Bifurcation theory and catastrophe theory , 1994 .

[94]  M. Rabinovich,et al.  Onset of stochasticity in decay confinement of parametric instability , 1978 .

[95]  Ian Stewart,et al.  Mathematics: The Lorenz attractor exists , 2000, Nature.

[96]  T. N. Mokaev,et al.  Homoclinic Bifurcations and Chaos in the Fishing Principle for the Lorenz-like Systems , 2020, Int. J. Bifurc. Chaos.

[97]  Nikolay V. Kuznetsov,et al.  Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE , 2017, Commun. Nonlinear Sci. Numer. Simul..

[98]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[99]  J. P. Lasalle Some Extensions of Liapunov's Second Method , 1960 .

[100]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 1994 .

[101]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[102]  Julien Clinton Sprott,et al.  Megastability: Coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping , 2017 .