Combining of judgments in imprecise voting multi-criteria decision problems

The imprecise voting multi-criteria decision problem depends on the way for combining the judgments of experts or a decision maker. Modifications of the DS/AHP method (Dempster-Shafer theory/analytic hierarchy process) are studied in the paper. These modifications use groups of experts or decision makers for comparing decision alternatives and criteria and they do not require assigning favourability values for groups of decision alternatives and criteria. Two ways are proposed for combining the expert judgments. The first way uses the extended total probability theorem for dealing with conditional basic probability assignments. The second way considers every criterion as an unreliable source of evidence and uses Dempster’s combination rule. Moreover, the imprecise Dirichlet model is applied to the modifications for making cautious decision. Numerical examples explain and illustrate the proposed modifications.

[1]  Milan Zeleny,et al.  The KM-MCDM interface in decision design: tradeoffs-free conflict dissolution , 2008, Int. J. Appl. Decis. Sci..

[2]  Johan Schubert,et al.  On varrho in a decision-theoretic apparatus of Dempster-Shafer theory , 1995, Int. J. Approx. Reason..

[3]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[4]  M. Beynon,et al.  The Dempster-Shafer theory of evidence: an alternative approach to multicriteria decision modelling , 2000 .

[5]  Lev V. Utkin Extensions of belief functions and possibility distributions by using the imprecise Dirichlet model , 2005, Fuzzy Sets Syst..

[6]  Lev V. Utkin,et al.  Ranking procedures by pairwise comparison using random sets and the imprecise Dirichlet model , 2006, Appl. Math. Comput..

[7]  Ronald Fagin,et al.  Two Views of Belief: Belief as Generalized Probability and Belief as Evidence , 1992, Artif. Intell..

[8]  Nalan Gülpinar,et al.  Robust team decision-making under uncertainty , 2010, Int. J. Appl. Decis. Sci..

[9]  Konstantinos Kirytopoulos,et al.  ANP SOLVER: an alternative tool for implementing the ANP method , 2011, Int. J. Appl. Decis. Sci..

[10]  David L. Olson,et al.  Interval-valued evidence sets from simulated product competitiveness: a Bulgarian winery decision , 2008, Int. J. Appl. Decis. Sci..

[11]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[12]  D. Dubois,et al.  A set-theoretic view of belief functions: Logical operations and approximations by fuzzy sets , 1986 .

[13]  L. Douglas Smith,et al.  Investigating Strategic Alternatives for Improving Service in an Inland Waterway Transportation System , 2010, Int. J. Strateg. Decis. Sci..

[14]  Thomas Augustin,et al.  Decision making under incomplete data using the imprecise Dirichlet model , 2007, Int. J. Approx. Reason..

[15]  Kurt Weichselberger Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung I , 2001 .

[16]  Sarojini Kesava Jajimoggala,et al.  Supplier evaluation using hybrid multiple criteria decision making approach , 2011, Int. J. Appl. Decis. Sci..

[17]  Lev V. Utkin,et al.  Probabilities of judgments provided by unknown experts by using the imprecise Dirichlet model , 2004 .

[18]  Charalambos L. Iacovou,et al.  A Comparison of Pairs, Triads and Quads in Multi-Attribute Decision Making , 2010, Int. J. Strateg. Decis. Sci..

[19]  Leena Suhl,et al.  A Multicriteria Multilevel Group Decision Method for Supplier Selection and Order Allocation , 2012, Int. J. Strateg. Decis. Sci..

[20]  Jing Ren,et al.  An optimised method of weighting combination in multi-index comprehensive evaluation , 2010, Int. J. Appl. Decis. Sci..

[21]  Malcolm J. Beynon,et al.  DS/AHP method: A mathematical analysis, including an understanding of uncertainty , 2002, Eur. J. Oper. Res..

[22]  Sarojini Kesava Jajimoggala,et al.  A Hybrid Multiple Criteria Decision Making Technique for Prioritizing Equipments , 2010, Int. J. Strateg. Decis. Sci..

[23]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[24]  Thomas L. Saaty,et al.  Making decisions in hierarchic and network systems , 2008, Int. J. Appl. Decis. Sci..

[25]  Thomas L. Saaty,et al.  Fuzzy Judgments and Fuzzy Sets , 2010, Int. J. Strateg. Decis. Sci..

[26]  Howard Raiffa,et al.  Games And Decisions , 1958 .

[27]  P. Walley Inferences from Multinomial Data: Learning About a Bag of Marbles , 1996 .

[28]  Jean-Marc Bernard,et al.  An introduction to the imprecise Dirichlet model for multinomial data , 2005, Int. J. Approx. Reason..