Combining of judgments in imprecise voting multi-criteria decision problems
暂无分享,去创建一个
[1] Milan Zeleny,et al. The KM-MCDM interface in decision design: tradeoffs-free conflict dissolution , 2008, Int. J. Appl. Decis. Sci..
[2] Johan Schubert,et al. On varrho in a decision-theoretic apparatus of Dempster-Shafer theory , 1995, Int. J. Approx. Reason..
[3] Arthur P. Dempster,et al. Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.
[4] M. Beynon,et al. The Dempster-Shafer theory of evidence: an alternative approach to multicriteria decision modelling , 2000 .
[5] Lev V. Utkin. Extensions of belief functions and possibility distributions by using the imprecise Dirichlet model , 2005, Fuzzy Sets Syst..
[6] Lev V. Utkin,et al. Ranking procedures by pairwise comparison using random sets and the imprecise Dirichlet model , 2006, Appl. Math. Comput..
[7] Ronald Fagin,et al. Two Views of Belief: Belief as Generalized Probability and Belief as Evidence , 1992, Artif. Intell..
[8] Nalan Gülpinar,et al. Robust team decision-making under uncertainty , 2010, Int. J. Appl. Decis. Sci..
[9] Konstantinos Kirytopoulos,et al. ANP SOLVER: an alternative tool for implementing the ANP method , 2011, Int. J. Appl. Decis. Sci..
[10] David L. Olson,et al. Interval-valued evidence sets from simulated product competitiveness: a Bulgarian winery decision , 2008, Int. J. Appl. Decis. Sci..
[11] Glenn Shafer,et al. A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.
[12] D. Dubois,et al. A set-theoretic view of belief functions: Logical operations and approximations by fuzzy sets , 1986 .
[13] L. Douglas Smith,et al. Investigating Strategic Alternatives for Improving Service in an Inland Waterway Transportation System , 2010, Int. J. Strateg. Decis. Sci..
[14] Thomas Augustin,et al. Decision making under incomplete data using the imprecise Dirichlet model , 2007, Int. J. Approx. Reason..
[15] Kurt Weichselberger. Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung I , 2001 .
[16] Sarojini Kesava Jajimoggala,et al. Supplier evaluation using hybrid multiple criteria decision making approach , 2011, Int. J. Appl. Decis. Sci..
[17] Lev V. Utkin,et al. Probabilities of judgments provided by unknown experts by using the imprecise Dirichlet model , 2004 .
[18] Charalambos L. Iacovou,et al. A Comparison of Pairs, Triads and Quads in Multi-Attribute Decision Making , 2010, Int. J. Strateg. Decis. Sci..
[19] Leena Suhl,et al. A Multicriteria Multilevel Group Decision Method for Supplier Selection and Order Allocation , 2012, Int. J. Strateg. Decis. Sci..
[20] Jing Ren,et al. An optimised method of weighting combination in multi-index comprehensive evaluation , 2010, Int. J. Appl. Decis. Sci..
[21] Malcolm J. Beynon,et al. DS/AHP method: A mathematical analysis, including an understanding of uncertainty , 2002, Eur. J. Oper. Res..
[22] Sarojini Kesava Jajimoggala,et al. A Hybrid Multiple Criteria Decision Making Technique for Prioritizing Equipments , 2010, Int. J. Strateg. Decis. Sci..
[23] P. Walley. Statistical Reasoning with Imprecise Probabilities , 1990 .
[24] Thomas L. Saaty,et al. Making decisions in hierarchic and network systems , 2008, Int. J. Appl. Decis. Sci..
[25] Thomas L. Saaty,et al. Fuzzy Judgments and Fuzzy Sets , 2010, Int. J. Strateg. Decis. Sci..
[26] Howard Raiffa,et al. Games And Decisions , 1958 .
[27] P. Walley. Inferences from Multinomial Data: Learning About a Bag of Marbles , 1996 .
[28] Jean-Marc Bernard,et al. An introduction to the imprecise Dirichlet model for multinomial data , 2005, Int. J. Approx. Reason..