Keck/NIRC2 L’-band Imaging of Jovian-mass Accreting Protoplanets around PDS 70

We present $L$'-band imaging of the PDS 70 planetary system with Keck/NIRC2 using the new infrared pyramid wavefront sensor. We detected both PDS 70 b and c in our images, as well as the front rim of the circumstellar disk. After subtracting off a model of the disk, we measured the astrometry and photometry of both planets. Placing priors based on the dynamics of the system, we estimated PDS 70 b to have a semi-major axis of $20^{+3}_{-4}$~au and PDS 70 c to have a semi-major axis of $34^{+12}_{-6}$~au (95\% credible interval). We fit the spectral energy distribution (SED) of both planets. For PDS 70 b, we were able to place better constraints on the red half of its SED than previous studies and inferred the radius of the photosphere to be 2-3~$R_{Jup}$. The SED of PDS 70 c is less well constrained, with a range of total luminosities spanning an order of magnitude. With our inferred radii and luminosities, we used evolutionary models of accreting protoplanets to derive a mass of PDS 70 b between 2 and 4 $M_{\textrm{Jup}}$ and a mean mass accretion rate between $3 \times 10^{-7}$ and $8 \times 10^{-7}~M_{\textrm{Jup}}/\textrm{yr}$. For PDS 70 c, we computed a mass between 1 and 3 $M_{\textrm{Jup}}$ and mean mass accretion rate between $1 \times 10^{-7}$ and $5 \times~10^{-7} M_{\textrm{Jup}}/\textrm{yr}$. The mass accretion rates imply dust accretion timescales short enough to hide strong molecular absorption features in both planets' SEDs.

[1]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[2]  Peter Bodenheimer,et al.  Calculations of the early evolution of Jupiter , 1974 .

[3]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[4]  J. Mathis Interstellar dust and extinction , 1987 .

[5]  Peter G. Martin,et al.  Shape and clustering effects on the optical properties of amorphous carbon , 1991 .

[6]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[7]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[8]  Alan P. Boss,et al.  Evolution of the Solar Nebula. IV. Giant Gaseous Protoplanet Formation , 1998 .

[9]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[10]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[11]  C. Helling,et al.  Dust in brown dwarfs. II. The coupled problem of dust formation and sedimentation , 2003 .

[12]  Michael C. Liu,et al.  Substructure in the Circumstellar Disk Around the Young Star AU Microscopii , 2004, Science.

[13]  C. Helling,et al.  Dust in brown dwarfs - III. Formation and structure of quasi-static cloud layers , 2004 .

[14]  L. Testi,et al.  Accretion in brown dwarfs: An infrared view , 2004 .

[15]  Young jupiters are faint: new models of the early evolution of giant planets , 2005, astro-ph/0510009.

[16]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[17]  M. Kasper,et al.  Adaptive optics for Extremely Large Telescopes , 2005, Proceedings of the International Astronomical Union.

[18]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[19]  C. Helling,et al.  Dust in brown dwarfs. V. Growth and evaporation of dirty dust grains , 2006 .

[20]  Pierre Bastien,et al.  Monte Carlo radiative transfer in protoplanetary disks , 2006 .

[21]  M. Marley,et al.  On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.

[22]  Mark S. Marley,et al.  Synthetic Spectra and Colors of Young Giant Planet Atmospheres: Effects of Initial Conditions and Atmospheric Metallicity , 2008, 0805.1066.

[23]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[24]  Royal Observatory of Edinburgh,et al.  Consistent Simulations of Substellar Atmospheres and Nonequilibrium Dust Cloud Formation , 2008, 0801.3733.

[25]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[26]  David A. Golimowski,et al.  THE 0.8–14.5 μm SPECTRA OF MID-L TO MID-T DWARFS: DIAGNOSTICS OF EFFECTIVE TEMPERATURE, GRAIN SEDIMENTATION, GAS TRANSPORT, AND SURFACE GRAVITY , 2009, 0906.2991.

[27]  J. Bean,et al.  The architecture of the GJ 876 planetary system - Masses and orbital coplanarity for planets b and c , 2009, 0901.3144.

[28]  M. Min,et al.  Benchmark problems for continuum radiative transfer. High optical depths, anisotropic scattering, and polarisation , 2009, 0903.1231.

[29]  D. Saumon,et al.  A PATCHY CLOUD MODEL FOR THE L TO T DWARF TRANSITION , 2010, 1009.6217.

[30]  P. Bodenheimer,et al.  Formation of Jupiter using opacities based on detailed grain physics , 2010, 1005.3875.

[31]  B. Macintosh,et al.  CLOUDS AND CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HR8799b , 2011, 1103.3895.

[32]  Models of Stars, Brown Dwarfs and Exoplanets , 2011 .

[33]  F. Allard,et al.  Models of very-low-mass stars, brown dwarfs and exoplanets , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Olivier Guyon,et al.  POLARIMETRIC IMAGING OF LARGE CAVITY STRUCTURES IN THE PRE-TRANSITIONAL PROTOPLANETARY DISK AROUND PDS 70: OBSERVATIONS OF THE DISK , 2012, 1208.2075.

[35]  M. Ireland,et al.  LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION? , 2011, 1110.3808.

[36]  Elvira Covino,et al.  X-shooter spectroscopy of young stellar objects: I - Mass accretion rates of low-mass T Tauri stars in \sigma Orionis , 2012, 1209.5799.

[37]  M. Cushing,et al.  MASSES, RADII, AND CLOUD PROPERTIES OF THE HR 8799 PLANETS , 2012, 1205.6488.

[38]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[39]  R. J. Wainscoat,et al.  THE EXTREMELY RED, YOUNG L DWARF PSO J318.5338−22.8603: A FREE-FLOATING PLANETARY-MASS ANALOG TO DIRECTLY IMAGED YOUNG GAS-GIANT PLANETS , 2013, 1310.0457.

[40]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[41]  Julien H. Girard,et al.  A YOUNG PROTOPLANET CANDIDATE EMBEDDED IN THE CIRCUMSTELLAR DISK OF HD 100546 , 2013, 1302.7122.

[42]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[43]  C. Mordasini,et al.  Grain opacity and the bulk composition of extrasolar planets. II. An analytical model for the grain opacity in protoplanetary atmospheres , 2014, 1406.4127.

[44]  C. Ormel AN ATMOSPHERIC STRUCTURE EQUATION FOR GRAIN GROWTH , 2014, 1406.4146.

[45]  R. Smart,et al.  The extremely red L dwarf ULAS J222711 004547 - dominated by dust. , 2014, 1401.0420.

[46]  A. Youdin,et al.  MINIMUM CORE MASSES FOR GIANT PLANET FORMATION WITH REALISTIC EQUATIONS OF STATE AND OPACITIES , 2014, 1412.5185.

[47]  J. Wisniewski,et al.  THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70, , 2014, 1411.2587.

[48]  A. Youdin,et al.  ON THE MINIMUM CORE MASS FOR GIANT PLANET FORMATION AT WIDE SEPARATIONS , 2013, 1311.0011.

[49]  Kaisey S. Mandel,et al.  CONSTRUCTING A FLEXIBLE LIKELIHOOD FUNCTION FOR SPECTROSCOPIC INFERENCE , 2014, 1412.5177.

[50]  K. Cruz,et al.  FUNDAMENTAL PARAMETERS AND SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG AND FIELD AGE OBJECTS WITH MASSES SPANNING THE STELLAR TO PLANETARY REGIME , 2015, 1508.01767.

[51]  A. Skemer,et al.  Accreting protoplanets in the LkCa 15 transition disk , 2015, Nature.

[52]  Jarron Leisenring,et al.  OPTICAL IMAGING POLARIMETRY OF THE LkCa 15 PROTOPLANETARY DISK WITH SPHERE ZIMPOL , 2015, 1507.03587.

[53]  Hidekazu Tanaka,et al.  FINAL MASSES OF GIANT PLANETS. II. JUPITER FORMATION IN A GAS-DEPLETED DISK , 2015, 1510.06848.

[54]  Zhaohuan Zhu,et al.  ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES , 2014, 1408.6554.

[55]  A. Burrows,et al.  RESOLVING THE HD 100546 PROTOPLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER: EVIDENCE FOR MULTIPLE FORMING, ACCRETING PLANETS , 2015, 1511.02526.

[56]  I. Mandel,et al.  Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations , 2015, 1501.05823.

[57]  Laurent Pueyo,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS USING PROJECTIONS ON KARHUNEN–LOEVE EIGENIMAGES: FORWARD MODELING , 2016, 1604.06097.

[58]  Pierre Baudoz,et al.  Optimizing the subwavelength grating of L-band annular groove phase masks for high coronagraphic performance , 2016, 1610.05065.

[59]  E. Mamajek,et al.  The star formation history and accretion-disc fraction among the K-type members of the Scorpius–Centaurus OB association , 2016, 1605.08789.

[60]  Timothy D. Brandt,et al.  THE MEASUREMENT, TREATMENT, AND IMPACT OF SPECTRAL COVARIANCE AND BAYESIAN PRIORS IN INTEGRAL-FIELD SPECTROSCOPY OF EXOPLANETS , 2016, 1602.00691.

[61]  Michael C. Liu,et al.  THE HAWAII INFRARED PARALLAX PROGRAM. II. YOUNG ULTRACOOL FIELD DWARFS , 2016, 1612.02426.

[62]  D. Fantinel,et al.  First light of the VLT planet finder SPHERE IV : Physical and chemical properties of the planets around HR8799 , 2015, 1511.04082.

[63]  Dmitry Savransky,et al.  SPECTROSCOPIC CHARACTERIZATION OF HD 95086 b WITH THE GEMINI PLANET IMAGER , 2016, 1604.01411.

[64]  Jessica R. Lu,et al.  A New Distortion Solution for NIRC2 on the Keck II Telescope , 2016 .

[65]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[66]  Dimitri Mawet,et al.  The W. M. Keck Observatory Infrared Vortex Coronagraph and a First Image of HIP 79124 B , 2016 .

[67]  T. Barman,et al.  ON THE COMPOSITION OF YOUNG, DIRECTLY IMAGED GIANT PLANETS , 2016, The Astrophysical journal.

[68]  C. Mordasini,et al.  Characterization of exoplanets from their formation III: The statistics of planetary luminosities , 2017, 1708.00868.

[69]  Dmitry Savransky,et al.  Complex Spiral Structure in the HD 100546 Transitional Disk as Revealed by GPI and MagAO , 2017, 1704.06260.

[70]  Jason J. Wang,et al.  An Optical/Near-infrared Investigation of HD 100546 b with the Gemini Planet Imager and MagAO , 2017, 1704.06317.

[71]  Henry Ngo,et al.  On-sky performance of the QACITS pointing control technique with the Keck/NIRC2 vortex coronagraph , 2017, 1701.06397.

[72]  Dmitry Savransky,et al.  Evidence That the Directly Imaged Planet HD 131399 Ab Is a Background Star , 2017, 1705.06851.

[73]  Gautam Vasisht,et al.  Characterizing 51 Eri b from 1 to 5 μm: A Partly Cloudy Exoplanet , 2017, 1705.03887.

[74]  A. Vigan,et al.  Spectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE , 2017, 1704.02987.

[75]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[76]  Henry Ngo,et al.  Characterizing the Performance of the NIRC2 Vortex Coronagraph at W. M. Keck Observatory , 2018, The Astronomical Journal.

[77]  Jason J. Wang,et al.  Direct Imaging of the HD 35841 Debris Disk: A Polarized Dust Ring from Gemini Planet Imager and an Outer Halo from HST/STIS , 2018, The Astronomical Journal.

[78]  Shane Jacobson,et al.  Adaptive optics with an infrared pyramid wavefront sensor , 2018, Astronomical Telescopes + Instrumentation.

[79]  Laird M. Close,et al.  Magellan Adaptive Optics Imaging of PDS 70: Measuring the Mass Accretion Rate of a Young Giant Planet within a Gapped Disk , 2018, The Astrophysical Journal Letters.

[80]  Frantz Martinache,et al.  SCExAO/CHARIS Near-infrared Direct Imaging, Spectroscopy, and Forward-Modeling of κ And b: A Likely Young, Low-gravity Superjovian Companion , 2018, The Astronomical Journal.

[81]  P. Schneider,et al.  Spectro-astrometry of the pre-transitional star LkCa 15 does not reveal an accreting planet but extended Hα emission , 2018, Astronomy & Astrophysics.

[82]  Dmitry Savransky,et al.  Dynamical Constraints on the HR 8799 Planets with GPI , 2018, The Astronomical Journal.

[83]  D. Fantinel,et al.  Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70 , 2018, Astronomy & Astrophysics.

[84]  T. Fusco,et al.  Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk , 2018, Astronomy & Astrophysics.

[85]  M. Marley,et al.  Sedimentation Efficiency of Condensation Clouds in Substellar Atmospheres , 2018, 1802.06241.

[86]  M. Ikoma,et al.  Theoretical Model of Hydrogen Line Emission from Accreting Gas Giants , 2018, The Astrophysical Journal.

[87]  M. Ikoma,et al.  Constraining Planetary Gas Accretion Rate from Hα Line Width and Intensity: Case of PDS 70 b and c , 2019, The Astrophysical Journal.

[88]  E. Chiang,et al.  The endgame of gas giant formation: accretion luminosity and contraction post-runaway , 2019, Monthly Notices of the Royal Astronomical Society.

[89]  J. Szulágyi,et al.  Observability of forming planets and their circumplanetary discs II. – SEDs and near-infrared fluxes , 2019, Monthly Notices of the Royal Astronomical Society.

[90]  Julien H. Girard,et al.  Separating extended disc features from the protoplanet in PDS 70 using VLT/SINFONI , 2019, Monthly Notices of the Royal Astronomical Society.

[91]  Henry Ngo,et al.  Reference Star Differential Imaging of Close-in Companions and Circumstellar Disks with the NIRC2 Vortex Coronagraph at the W. M. Keck Observatory , 2019, The Astronomical Journal.

[92]  Stefano Facchini,et al.  Detection of Continuum Submillimeter Emission Associated with Candidate Protoplanets , 2019, The Astrophysical Journal.

[93]  T. Henning,et al.  Highly structured disk around the planet host PDS 70 revealed by high-angular resolution observations with ALMA , 2019, Astronomy & Astrophysics.

[94]  C. U. Keller,et al.  Two accreting protoplanets around the young star PDS 70 , 2019, Nature Astronomy.

[95]  Jason J. Wang,et al.  An Exo–Kuiper Belt with an Extended Halo around HD 191089 in Scattered Light , 2019, The Astrophysical Journal.

[96]  A. Boccaletti,et al.  VLT/SPHERE exploration of the young multiplanetary system PDS70 , 2019, Astronomy & Astrophysics.

[97]  N. Calvet,et al.  Magnetospheric Accretion as a Source of Hα Emission from Protoplanets around PDS 70 , 2019, The Astrophysical Journal.

[98]  Julien H. Girard,et al.  Evidence for a Circumplanetary Disk around Protoplanet PDS 70 b , 2019, The Astrophysical Journal.

[99]  Jason J. Wang,et al.  orbitize!: A Comprehensive Orbit-fitting Software Package for the High-contrast Imaging Community , 2019, The Astronomical Journal.

[100]  J. Hashimoto,et al.  Accretion Properties of PDS 70b with MUSE , 2020, The Astronomical Journal.