Interpolation-Based Multi-Mode Precoding for MIMO-OFDM Systems with Limited Feedback

Spatial multiplexing with multi-mode precoding provides a means to achieve both high capacity and high reliability in multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) systems. Multi-mode precoding uses linear transmit precoding that adapts the number of spatial multiplexing data streams or modes, according to the transmit channel state information (CSI). As such, it typically requires complete knowledge of the multi-mode precoding matrices for each subcarrier at the transmitter. In practical scenarios where the CSI is acquired at the receiver and fed back to the transmitter through a low-rate feedback link, this requirement may entail a prohibitive feedback overhead. In this paper, we propose to reduce the feedback requirement by combining codebook-based precoder quantization, to efficiently quantize and represent the optimal precoder on each subcarrier, and multi-mode precoder frequency down-sampling and interpolation, to efficiently reconstruct the precoding matrices on all subcarriers based on the feedback of the indexes of the quantized precoders only on a fraction of the subcarriers. To enable this efficient interpolation-based quantized multimode precoding solution, we introduce (1) a novel precoder codebook design that lends itself to precoder interpolation, across subcarriers, followed by mode selection, (2) a new precoder interpolator and, finally, (3) a clustered mode selection approach that significantly reduces the feedback overhead related to the mode information on each subcarrier. Monte-Carlo bit-error rate (BER) performance simulations demonstrate the effectiveness of the proposed quantized multi-mode precoding solution, at reasonable feedback overhead

[1]  Frederick W. Vook,et al.  MIMO strategies for equal-rate data streams , 2001, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211).

[2]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[3]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[4]  Anna Scaglione,et al.  Optimal designs for space-time linear precoders and decoders , 2002, IEEE Trans. Signal Process..

[5]  Georgios B. Giannakis,et al.  Optimal transmitter eigen-beamforming and space time block coding based on channel mean , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[6]  Rick S. Blum MIMO with limited feedback of channel state information , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[7]  Robert W. Heath,et al.  Antenna selection for spatial multiplexing systems with linear receivers , 2001, IEEE Communications Letters.

[8]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[9]  Gregory W. Wornell,et al.  Efficient use of side information in multiple-antenna data transmission over fading channels , 1998, IEEE J. Sel. Areas Commun..

[10]  Robert W. Heath,et al.  Limited feedback precoding for spatial multiplexing systems using linear receivers , 2003, IEEE Military Communications Conference, 2003. MILCOM 2003..

[11]  S. Thoen,et al.  A new joint transmit and receive optimization scheme for OFDM-based MIMO systems , 2003, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring..

[12]  G. Jongren,et al.  Improving orthogonal space-time block codes by utilizing quantized feedback information , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[13]  John M. Cioffi,et al.  Spatio-temporal coding for wireless communications , 1996, Proceedings of GLOBECOM'96. 1996 IEEE Global Telecommunications Conference.

[14]  Mikael Skoglund,et al.  Utilizing quantized feedback information in orthogonal space-time block coding , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[15]  John G. Proakis,et al.  Digital Communications , 1983 .

[16]  John M. Cioffi,et al.  Spatio-temporal coding for wireless communication , 1998, IEEE Trans. Commun..

[17]  Robert W. Heath,et al.  Limited feedback precoding for spatial multiplexing systems , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[18]  Liesbet Van der Perre,et al.  A low complexity ML channel estimator for OFDM , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[19]  R.W. Heath,et al.  Multimode precoding for MIMO wireless systems , 2005, IEEE Transactions on Signal Processing.

[20]  John M. Cioffi,et al.  Joint Tx-Rx beamforming design for multicarrier MIMO channels: a unified framework for convex optimization , 2003, IEEE Trans. Signal Process..

[21]  Bhaskar D. Rao,et al.  An efficient feedback method for MIMO systems with slowly time-varying channels , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[22]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[23]  Arogyaswami Paulraj,et al.  Selecting an optimal set of transmit antennas for a low rank matrix channel , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[24]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[25]  Petre Stoica,et al.  Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion , 2001, IEEE Trans. Commun..

[26]  Vincent K. N. Lau,et al.  On the design of MIMO block-fading channels with feedback-link capacity constraint , 2004, IEEE Transactions on Communications.

[27]  Hugo De Man,et al.  Spatial-Mode Selection for the Joint Transmit and Receive MMSE Design , 2004, EURASIP J. Adv. Signal Process..

[28]  Olivier Berder,et al.  Optimal minimum distance-based precoder for MIMO spatial multiplexing systems , 2004, IEEE Transactions on Signal Processing.

[29]  Upamanyu Madhow,et al.  Space-Time transmit precoding with imperfect feedback , 2001, IEEE Trans. Inf. Theory.

[30]  Anna Scaglione,et al.  Statistical analysis of the capacity of MIMO frequency selective Rayleigh fading channels with arbitrary number of inputs and outputs , 2002, Proceedings IEEE International Symposium on Information Theory,.

[31]  P. Wambacq,et al.  OFDM-MIMO WLAN AP front-end gain and phase mismatch calibration , 2004, Proceedings. 2004 IEEE Radio and Wireless Conference (IEEE Cat. No.04TH8746).

[32]  Daniel Asimov,et al.  Grand tour via geodesic interpolation of 2-frames , 1994, Electronic Imaging.

[33]  Hugo De Man,et al.  On spatial-mode selection for the joint transmit and receive MMSE design , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[34]  Robert W. Heath,et al.  Interpolation based unitary precoding for spatial multiplexing MIMO-OFDM with limited feedback , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[35]  Luc Deneire,et al.  Optimizing the joint transmit and receive MMSE design using mode selection , 2005, IEEE Transactions on Communications.

[36]  Bhaskar D. Rao,et al.  MIMO spatial multiplexing systems with limited feedback , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[37]  Calin Belta,et al.  An SVD-based projection method for interpolation on SE(3) , 2002, IEEE Trans. Robotics Autom..

[38]  Robert W. Heath,et al.  Multi-mode precoding using linear receivers for limited feedback MIMO systems , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[39]  Mattias Wennström,et al.  On MIMO Systems and Adaptive Arrays for Wireless Communication : Analysis and Practical Aspects , 2002 .

[40]  V. Erceg,et al.  TGn Channel Models , 2004 .

[41]  Chen-Nee Chuah,et al.  Capacity scaling in MIMO Wireless systems under correlated fading , 2002, IEEE Trans. Inf. Theory.

[42]  Maher Moakher,et al.  To appear in: SIAM J. MATRIX ANAL. APPL. MEANS AND AVERAGING IN THE GROUP OF ROTATIONS∗ , 2002 .

[43]  M. Honig,et al.  Asymptotic performance of MIMO wireless channels with limited feedback , 2003, IEEE Military Communications Conference, 2003. MILCOM 2003..

[44]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[45]  S. Zhou,et al.  BER criterion and codebook construction for finite-rate precoded spatial multiplexing , 2005, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005..

[46]  Robert W. Heath,et al.  Interpolation based transmit beamforming for MIMO-OFDM with limited feedback , 2004, IEEE Transactions on Signal Processing.

[47]  Michael L. Honig,et al.  Benefits of limited feedback for wireless channels , 2003 .

[48]  Mikael Skoglund,et al.  Combining beamforming and orthogonal space-time block coding , 2002, IEEE Trans. Inf. Theory.

[49]  Robert W. Heath,et al.  Interpolation Based Unitary Precoding for Spatial Multiplexing MIMO-OFDM With Limited Feedback , 2006, IEEE Trans. Signal Process..

[50]  Mattias Wennstr,et al.  ON MIMO SYSTEMS AND ADAPTIVE ARRAYS FOR WIRELESS COMMUNICATION Analysis and Practical Issues , 2002 .