On the faithfulness of graph visualizations

Readability criteria have been commonly used to measure the quality of graph visualizations. In this paper we argue that readability criteria, while necessary, are not sufficient. We propose a new kind of criterion, generically termed faithfulness, for evaluating graph layout methods. We propose a general model for quantifying faithfulness, and contrast it with the well established readability criteria. We use examples of multidimensional scaling, edge bundling and several other visualization metaphors (including matrix-based and map-based visualizations) to illustrate faithfulness.

[1]  Walter F. Tichy,et al.  Edge: An extendible graph editor , 1990, Softw. Pract. Exp..

[2]  Enrico Bertini,et al.  Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[3]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[4]  Ulrik Brandes,et al.  Eigensolver Methods for Progressive Multidimensional Scaling of Large Data , 2006, GD.

[5]  Peter Eades,et al.  A Heuristic for Graph Drawing , 1984 .

[6]  Ulrik Brandes,et al.  Network Analysis: Methodological Foundations , 2010 .

[7]  Nicholas Diakopoulos,et al.  Visualization Rhetoric: Framing Effects in Narrative Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[8]  M. Sheelagh T. Carpendale,et al.  Evaluating Information Visualizations , 2008, Information Visualization.

[9]  Kozo Sugiyama,et al.  Layout Adjustment and the Mental Map , 1995, J. Vis. Lang. Comput..

[10]  B. Marx The Visual Display of Quantitative Information , 1985 .

[11]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[12]  Jarke J. van Wijk,et al.  The value of visualization , 2005, VIS 05. IEEE Visualization, 2005..

[13]  Peter Eades,et al.  FADE: Graph Drawing, Clustering, and Visual Abstraction , 2000, GD.

[14]  D. Weiskopf Image-Based Edge Bundles: Simplified Visualization of Large Graphs , 2010 .

[15]  Peter Eades,et al.  How to Draw a Graph, Revisited , 2012, Expanding the Frontiers of Visual Analytics and Visualization.

[16]  Peter Eades,et al.  On the faithfulness of graph visualizations , 2013, PacificVis.

[17]  Daniel W. Archambault,et al.  Animation, Small Multiples, and the Effect of Mental Map Preservation in Dynamic Graphs , 2011, IEEE Transactions on Visualization and Computer Graphics.

[18]  Eytan Adar,et al.  Benefitting InfoVis with Visual Difficulties , 2011, IEEE Transactions on Visualization and Computer Graphics.

[19]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[20]  Ulrik Brandes,et al.  A Quantitative Comparison of Stress-Minimization Approaches for Offline Dynamic Graph Drawing , 2011, GD.

[21]  Roberto Tamassia,et al.  Curvilinear Graph Drawing Using the Force-Directed Method , 2004, GD.

[22]  Jarke J. van Wijk,et al.  Force‐Directed Edge Bundling for Graph Visualization , 2009, Comput. Graph. Forum.

[23]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[24]  Clayton Lewis,et al.  A problem-oriented classification of visualization techniques , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[25]  David Eppstein,et al.  Delta-Confluent Drawings , 2005, Graph Drawing.

[26]  Min Chen,et al.  Data, Information, and Knowledge in Visualization , 2009, IEEE Computer Graphics and Applications.

[27]  Romain Bourqui,et al.  Winding Roads: Routing edges into bundles , 2010, Comput. Graph. Forum.

[28]  Peter Eades,et al.  TGI-EB: A New Framework for Edge Bundling Integrating Topology, Geometry and Importance , 2011, Graph Drawing.

[29]  Yifan Hu,et al.  Efficient, High-Quality Force-Directed Graph Drawing , 2006 .

[30]  Jeffrey Heer,et al.  Divided Edge Bundling for Directional Network Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[31]  Matthew O. Ward,et al.  Theoretical Foundations of Information Visualization , 2008, Information Visualization.

[32]  Emden R. Gansner,et al.  Improved Force-Directed Layouts , 1998, GD.

[33]  Xiaojun Wu,et al.  Real-time 3D shape reconstruction, dynamic 3D mesh deformation, and high fidelity visualization for 3D video , 2004, Comput. Vis. Image Underst..

[34]  Emden R. GansnerYifan Multilevel Agglomerative Edge Bundling for Visualizing Large Graphs , 2011 .

[35]  Catherine Plaisant,et al.  Seven Guiding Scenarios for Information Visualization Evaluation , 2011 .

[36]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[37]  David Eppstein,et al.  Confluent Layered Drawings , 2006, Algorithmica.

[38]  F. J. Newbery Edge concentration: a method for clustering directed graphs , 1989 .

[39]  Hong Zhou,et al.  Energy-Based Hierarchical Edge Clustering of Graphs , 2008, 2008 IEEE Pacific Visualization Symposium.

[40]  Wolfgang Kienreich,et al.  An Application of Edge Bundling Techniques to the Visualization of Media Analysis Results , 2010, 2010 14th International Conference Information Visualisation.

[41]  Min Chen,et al.  Visual Reconstructability as a Quality Metric for Flow Visualization , 2011, Comput. Graph. Forum.

[42]  Robert Kosara,et al.  Adaptive Privacy-Preserving Visualization Using Parallel Coordinates , 2011, IEEE Transactions on Visualization and Computer Graphics.

[43]  Hong Zhou,et al.  Geometry-Based Edge Clustering for Graph Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[44]  Yifan Hu,et al.  GMap: Visualizing graphs and clusters as maps , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).