Noninvasive identification of ventricular tachycardia-related conducting channels using contrast-enhanced magnetic resonance imaging in patients with chronic myocardial infarction: comparison of signal intensity scar mapping and endocardial voltage mapping.

OBJECTIVES We performed noninvasive identification of post-infarction sustained monomorphic ventricular tachycardia (SMVT)-related slow conduction channels (CC) by contrast-enhanced magnetic resonance imaging (ceMRI). BACKGROUND Conduction channels identified by voltage mapping are the critical isthmuses of most SMVT. We hypothesized that CC are formed by heterogeneous tissue (HT) within the scar that can be detected by ceMRI. METHODS We studied 18 consecutive VT patients (SMVT group) and 18 patients matched for age, sex, infarct location, and left ventricular ejection fraction (control group). We used ceMRI to quantify the infarct size and differentiate it into scar core and HT based on signal-intensity (SI) thresholds (>3 SD and 2 to 3 SD greater than remote normal myocardium, respectively). Consecutive left ventricle slices were analyzed to determine the presence of continuous corridors of HT (channels) in the scar. In the SMVT group, color-coded shells displaying ceMRI subendocardial SI were generated (3-dimensional SI mapping) and compared with endocardial voltage maps. RESULTS No differences were observed between the 2 groups in myocardial, necrotic, or heterogeneous mass. The HT channels were more frequently observed in the SMVT group (88%) than in the control group (33%, p < 0.001). In the SMVT group, voltage mapping identified 26 CC in 17 of 18 patients. All CC corresponded, in location and orientation, to a similar channel detected by 3-dimensional SI mapping; 15 CC were related to 15 VT critical isthmuses. CONCLUSIONS SMVT substrate can be identified by ceMRI scar heterogeneity analysis. This information could help identify patients at risk of VT and facilitate VT ablation.

[1]  Paul B. Sparks,et al.  Fundamental differences in electrophysiologic and electroanatomic substrate between ischemic cardiomyopathy patients with and without clinical ventricular tachycardia. , 2009, Journal of the American College of Cardiology.

[2]  D. Lin,et al.  Anatomic characterization of endocardial substrate for hemodynamically stable reentrant ventricular tachycardia: identification of endocardial conducting channels. , 2006, Heart rhythm.

[3]  Jeremy N Ruskin,et al.  Prophylactic catheter ablation for the prevention of defibrillator therapy. , 2007, The New England journal of medicine.

[4]  J. Ruskin,et al.  Integration of cardiac magnetic resonance imaging with three-dimensional electroanatomic mapping to guide left ventricular catheter manipulation: feasibility in a porcine model of healed myocardial infarction. , 2004, Journal of the American College of Cardiology.

[5]  Raymond J Kim,et al.  Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. , 2005, Journal of the American College of Cardiology.

[6]  Warren M. Jackman,et al.  Irrigated Radiofrequency Catheter Ablation Guided by Electroanatomic Mapping for Recurrent Ventricular Tachycardia After Myocardial Infarction: The Multicenter Thermocool Ventricular Tachycardia Ablation Trial , 2008, Circulation.

[7]  Katherine C. Wu,et al.  Infarct Tissue Heterogeneity by Magnetic Resonance Imaging Identifies Enhanced Cardiac Arrhythmia Susceptibility in Patients With Left Ventricular Dysfunction , 2007, Circulation.

[8]  Mercedes Ortiz,et al.  Ablation of electrograms with an isolated, delayed component as treatment of unmappable monomorphic ventricular tachycardias in patients with structural heart disease. , 2003, Journal of the American College of Cardiology.

[9]  Dan W Rettmann,et al.  Accurate and Objective Infarct Sizing by Contrast-enhanced Magnetic Resonance Imaging in a Canine Myocardial Infarction Model , 2022 .

[10]  John L. Sapp,et al.  Electrically Unexcitable Scar Mapping Based on Pacing Threshold for Identification of the Reentry Circuit Isthmus: Feasibility for Guiding Ventricular Tachycardia Ablation , 2002, Circulation.

[11]  R. Kim,et al.  Performance of Delayed-Enhancement Magnetic Resonance Imaging With Gadoversetamide Contrast for the Detection and Assessment of Myocardial Infarction: An International, Multicenter, Double-Blinded, Randomized Trial , 2008, Circulation.

[12]  J M de Bakker,et al.  Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: electrophysiologic and anatomic correlation. , 1988, Circulation.

[13]  Benoit Desjardins,et al.  Infarct architecture and characteristics on delayed enhanced magnetic resonance imaging and electroanatomic mapping in patients with postinfarction ventricular arrhythmia. , 2009, Heart rhythm.

[14]  A. Wilde,et al.  Ventricular tachycardia in the infarcted, Langendorff-perfused human heart: role of the arrangement of surviving cardiac fibers. , 1990, Journal of the American College of Cardiology.

[15]  W. Stevenson,et al.  Characterization of the Peri-Infarct Zone by Contrast-Enhanced Cardiac Magnetic Resonance Imaging Is a Powerful Predictor of Post–Myocardial Infarction Mortality , 2006, Circulation.

[16]  Freddy Odille,et al.  Electroanatomic characterization of post-infarct scars comparison with 3-dimensional myocardial scar reconstruction based on magnetic resonance imaging. , 2008, Journal of the American College of Cardiology.

[17]  Mercedes Ortiz,et al.  Tachycardia-Related Channel in the Scar Tissue in Patients With Sustained Monomorphic Ventricular Tachycardias: Influence of the Voltage Scar Definition , 2004, Circulation.