Online-Data-Mining auf Datenströmen: Methoden zur Clusteranalyse und Klassifikation

• J. Beringer and E. Hüllermeier. Efficient instance based learning on data streams. Adaptive optimization of the number of clusters in fuzzy clustering. Fuzzy clustering of parallel data streams. Adaptive optimization of the number of clusters in fuzzy clustering.

[1]  Sudipto Guha,et al.  Clustering Data Streams , 2000, FOCS.

[2]  Dennis Shasha,et al.  StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time , 2002, VLDB.

[3]  Isamu Shioya,et al.  Clustering Stream Data by Regression Analysis , 2004, ACSW.

[4]  David J. DeWitt,et al.  NiagaraCQ: a scalable continuous query system for Internet databases , 2000, SIGMOD '00.

[5]  Peter Clark,et al.  The CN2 induction algorithm , 2004, Machine Learning.

[6]  Marcos Salganico,et al.  Tolerating concept and sampling shift in lazy learning using prediction error context switching , 1997 .

[7]  AgrawalRakesh,et al.  Mining association rules between sets of items in large databases , 1993 .

[8]  Eyke Hüllermeier,et al.  Online clustering of parallel data streams , 2006, Data Knowl. Eng..

[9]  Geoff Hulten,et al.  Mining time-changing data streams , 2001, KDD '01.

[10]  João Gama,et al.  Learning with Drift Detection , 2004, SBIA.

[11]  Surajit Chaudhuri,et al.  An overview of data warehousing and OLAP technology , 1997, SGMD.

[12]  Sudipto Guha,et al.  Clustering Data Streams: Theory and Practice , 2003, IEEE Trans. Knowl. Data Eng..

[13]  Gerhard Widmer,et al.  Adapting to Drift in Continuous Domains , 2007 .

[14]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[15]  Johannes Gehrke,et al.  BOAT—optimistic decision tree construction , 1999, SIGMOD '99.

[16]  Paul S. Bradley,et al.  Refining Initial Points for K-Means Clustering , 1998, ICML.

[17]  Won Suk Lee,et al.  Finding recent frequent itemsets adaptively over online data streams , 2003, KDD '03.

[18]  Anne Rogers,et al.  Hancock: a language for extracting signatures from data streams , 2000, KDD '00.

[19]  Svetha Venkatesh,et al.  Using multiple windows to track concept drift , 2004, Intell. Data Anal..

[20]  Christian Hidber,et al.  Association Rule Mining , 2017 .

[21]  Jing Gao,et al.  An Incremental Data Stream Clustering Algorithm Based on Dense Units Detection , 2005, PAKDD.

[22]  Ryszard S. Michalski,et al.  Incremental learning with partial instance memory , 2002, Artif. Intell..

[23]  Jesús S. Aguilar-Ruiz,et al.  Data streams classification by incremental rule learning with parameterized generalization , 2006, SAC '06.

[24]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[25]  Marcus A. Maloof,et al.  Incremental rule learning with partial instance memory for changing concepts , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[26]  Frederick Reiss,et al.  TelegraphCQ: Continuous Dataflow Processing for an Uncertain World , 2003, CIDR.

[27]  Ravi Kothari,et al.  On finding the number of clusters , 1999, Pattern Recognit. Lett..

[28]  Carlo Zaniolo,et al.  An Adaptive Nearest Neighbor Classification Algorithm for Data Streams , 2005, PKDD.

[29]  Qiang Chen,et al.  Aurora : a new model and architecture for data stream management ) , 2006 .

[30]  B. G. Batchelor,et al.  Method for location of clusters of patterns to initialise a learning machine , 1969 .

[31]  Gerhard Widmer,et al.  Learning in the presence of concept drift and hidden contexts , 2004, Machine Learning.

[32]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[33]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[34]  Rajeev Motwani,et al.  Approximate Frequency Counts over Data Streams , 2012, VLDB.

[35]  Philip S. Yu,et al.  A Framework for Clustering Evolving Data Streams , 2003, VLDB.

[36]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[37]  Kenneth O. Stanley Learning Concept Drift with a Committee of Decision Trees , 2003 .

[38]  Won Suk Lee,et al.  estWin: Online data stream mining of recent frequent itemsets by sliding window method , 2005, J. Inf. Sci..

[39]  Won Suk Lee,et al.  A Sliding Window Method for Finding Recently Frequent Itemsets over Online Data Streams , 2004, J. Inf. Sci. Eng..

[40]  Pedro M. Domingos Rule Induction and Instance-Based Learning: A Unified Approach , 1995, IJCAI.

[41]  Calton Pu,et al.  WebCQ-detecting and delivering information changes on the web , 2000, CIKM '00.

[42]  Hichem Frigui,et al.  Clustering by competitive agglomeration , 1997, Pattern Recognit..

[43]  Ralf Klinkenberg,et al.  Learning drifting concepts: Example selection vs. example weighting , 2004, Intell. Data Anal..

[44]  Jennifer Widom,et al.  STREAM: the stanford stream data manager (demonstration description) , 2003, SIGMOD '03.

[45]  Hongjun Lu,et al.  Continuously maintaining quantile summaries of the most recent N elements over a data stream , 2004, Proceedings. 20th International Conference on Data Engineering.

[46]  Ralf Klinkenberg,et al.  Boosting classifiers for drifting concepts , 2007, Intell. Data Anal..

[47]  Mark Sullivan,et al.  Tribeca: A Stream Database Manager for Network Traffic Analysis , 1996, VLDB.

[48]  Aoying Zhou,et al.  Density-Based Clustering over an Evolving Data Stream with Noise , 2006, SDM.

[49]  Pavel Zezula,et al.  Indexing Metric Spaces with M-Tree , 1997, SEBD.

[50]  angesichts der Corona-Pandemie,et al.  UPDATE , 1973, The Lancet.

[51]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[52]  Anne-Kathrin Lauer Literaturverzeichnis. , 1935, Die Nichtangriffsverpflichtung im deutschen und europäischen Kartellrecht.

[53]  Bernhard Seeger,et al.  XXL - A Library Approach to Supporting Efficient Implementations of Advanced Database Queries , 2001, VLDB.

[54]  Bernhard Seeger,et al.  PIPES: a public infrastructure for processing and exploring streams , 2004, SIGMOD '04.

[55]  Bruce G. Lindsay,et al.  Approximate medians and other quantiles in one pass and with limited memory , 1998, SIGMOD '98.

[56]  Pedro M. Domingos Unifying Instance-Based and Rule-Based Induction , 1996, Machine Learning.

[57]  Philip S. Yu,et al.  Mining concept-drifting data streams using ensemble classifiers , 2003, KDD '03.

[58]  Eyke Hüllermeier,et al.  Efficient instance-based learning on data streams , 2007, Intell. Data Anal..

[59]  Geoff Hulten,et al.  Mining high-speed data streams , 2000, KDD '00.

[60]  S. Salzberg A nearest hyperrectangle learning method , 2004, Machine Learning.

[61]  Marcus A. Maloof,et al.  Dynamic weighted majority: a new ensemble method for tracking concept drift , 2003, Third IEEE International Conference on Data Mining.

[62]  E. M. Wright,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[63]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[64]  Rajeev Motwani,et al.  Sampling from a moving window over streaming data , 2002, SODA '02.

[65]  William Nick Street,et al.  A streaming ensemble algorithm (SEA) for large-scale classification , 2001, KDD '01.

[66]  Johannes Fürnkranz,et al.  Incremental Reduced Error Pruning , 1994, ICML.

[67]  Philip S. Yu,et al.  Moment: maintaining closed frequent itemsets over a stream sliding window , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[68]  Gurmeet Singh Manku,et al.  Approximate counts and quantiles over sliding windows , 2004, PODS.

[69]  Gerhard Widmer,et al.  Learning Flexible Concepts from Streams of Examples: FLORA 2 , 1992, ECAI.

[70]  Jiawei Han,et al.  MAIDS: mining alarming incidents from data streams , 2004, SIGMOD '04.

[71]  Geoff Hulten,et al.  A General Framework for Mining Massive Data Streams , 2003 .

[72]  João Gama,et al.  Adaptation to Drifting Concepts , 2003, EPIA.

[73]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[74]  Ting Su,et al.  A deterministic method for initializing K-means clustering , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[75]  Gerhard Widmer,et al.  Effective Learning in Dynamic Environments by Explicit Context Tracking , 1993, ECML.

[76]  Rajeev Motwani,et al.  Maintaining variance and k-medians over data stream windows , 2003, PODS.

[77]  Shai Ben-David,et al.  Detecting Change in Data Streams , 2004, VLDB.

[78]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[79]  João Gama,et al.  Learning decision trees from dynamic data streams , 2005, SAC '05.

[80]  Sanjeev Khanna,et al.  Space-efficient online computation of quantile summaries , 2001, SIGMOD '01.

[81]  Miles S. Rogers,et al.  IDEA—a conversational, heuristic program for Inductive Data Exploration and Analysis , 1967, ACM '67.

[82]  William W. Cohen Fast Effective Rule Induction , 1995, ICML.

[83]  Richard Granger,et al.  Incremental Learning from Noisy Data , 1986, Machine Learning.

[84]  Pedro M. Domingos Towards a Unified Approach to Concept Learning , 1996, AAAI/IAAI, Vol. 2.

[85]  Yong Yao,et al.  The cougar approach to in-network query processing in sensor networks , 2002, SGMD.

[86]  Jeffrey Scott Vitter,et al.  Random sampling with a reservoir , 1985, TOMS.