Contribution of Exploratory Methods to the Investigation of Extended Large-Scale Brain Networks in Functional MRI: Methodologies, Results, and Challenges

A large-scale brain network can be defined as a set of segregated and integrated regions, that is, distant regions that share strong anatomical connections and functional interactions. Data-driven investigation of such networks has recently received a great deal of attention in blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). We here review the rationale for such an investigation, the methods used, the results obtained, and also discuss some issues that have to be faced for an efficient exploration.

[1]  Yingli Lu,et al.  Region growing method for the analysis of functional MRI data , 2003, NeuroImage.

[2]  Habib Benali,et al.  Using partial correlation to enhance structural equation modeling of functional MRI data. , 2007, Magnetic resonance imaging.

[3]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[4]  P. Skudlarski,et al.  Detection of functional connectivity using temporal correlations in MR images , 2002, Human brain mapping.

[5]  Peter Andras,et al.  Simulation of robustness against lesions of cortical networks , 2007, The European journal of neuroscience.

[6]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[7]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[8]  Edward T. Bullmore,et al.  Efficiency and Cost of Economical Brain Functional Networks , 2007, PLoS Comput. Biol..

[9]  Habib Benali,et al.  Partial correlation for functional brain interactivity investigation in functional MRI , 2006, NeuroImage.

[10]  Katsuya Ogata,et al.  Functional network of the basal ganglia and cerebellar motor loops in vivo: Different activation patterns between self-initiated and externally triggered movements , 2006, NeuroImage.

[11]  R Baumgartner,et al.  Assessment of cluster homogeneity in fMRI data using Kendall's coefficient of concordance. , 1999, Magnetic resonance imaging.

[12]  Karl J. Friston,et al.  A neural mass model for MEG/EEG: coupling and neuronal dynamics , 2003, NeuroImage.

[13]  J Doyon,et al.  Large‐scale neural model validation of partial correlation analysis for effective connectivity investigation in functional MRI , 2009, Human brain mapping.

[14]  Klaas E. Stephan,et al.  Network participation indices: characterizing component roles for information processing in neural networks , 2003, Neural Networks.

[15]  G. Edelman,et al.  Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. , 1992, Cerebral cortex.

[16]  Roberto Toro,et al.  Geometric atlas: modeling the cortex as an organized surface , 2003, NeuroImage.

[17]  Aapo Hyvärinen,et al.  Independent component analysis of fMRI group studies by self-organizing clustering , 2005, NeuroImage.

[18]  Silke Dodel,et al.  Condition-dependent functional connectivity: syntax networks in bilinguals , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[19]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[20]  Peter A. Bandettini,et al.  Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI , 2006, NeuroImage.

[21]  Karl J. Friston,et al.  Movement‐Related effects in fMRI time‐series , 1996, Magnetic resonance in medicine.

[22]  M. Raichle The Brain's Dark Energy , 2006, Science.

[23]  Habib Benali,et al.  Identification of large-scale networks in the brain using fMRI , 2006, NeuroImage.

[24]  L. Parsons,et al.  Interregional connectivity to primary motor cortex revealed using MRI resting state images , 1999, Human brain mapping.

[25]  N. Logothetis The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal , 2003, The Journal of Neuroscience.

[26]  V. Haughton,et al.  Mapping functionally related regions of brain with functional connectivity MR imaging. , 2000, AJNR. American journal of neuroradiology.

[27]  V. Haughton,et al.  Functional connectivity in the thalamus and hippocampus studied with functional MR imaging. , 2000, AJNR. American journal of neuroradiology.

[28]  C. Calautti,et al.  Functional Neuroimaging Studies of Motor Recovery After Stroke in Adults: A Review , 2003, Stroke.

[29]  J. Daunizeau,et al.  Conditional correlation as a measure of mediated interactivity in fMRI and MEG/EEG , 2005, IEEE Transactions on Signal Processing.

[30]  Neelima Gupte,et al.  Networks: structure, function and optimisation , 2005 .

[31]  Yoko Yamaguchi,et al.  Long-range EEG phase synchronization during an arithmetic task indexes a coherent cortical network simultaneously measured by fMRI , 2005, NeuroImage.

[32]  Richard A. Harshman,et al.  Noise Reduction in BOLD-Based fMRI Using Component Analysis , 2002, NeuroImage.

[33]  F. Carver,et al.  Complex relationship between BOLD signal and synchronization/desynchronization of human brain MEG oscillations , 2007, Human brain mapping.

[34]  A. Anderson,et al.  Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes. , 2001, Physics in medicine and biology.

[35]  Deborah A. Hall,et al.  Connectivity analysis with structural equation modelling: an example of the effects of voxel selection , 2003, NeuroImage.

[36]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[37]  M E Raichle Modern Phrenology: Maps of Human Cortical Function , 1999, Annals of the New York Academy of Sciences.

[38]  H. Duffau Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity , 2005, The Lancet Neurology.

[39]  Rainer Goebel,et al.  Mapping directed influence over the brain using Granger causality and fMRI , 2005, NeuroImage.

[40]  Dante R. Chialvo Critical brain networks , 2004 .

[41]  C. Windischberger,et al.  Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis. , 1998, Magnetic resonance imaging.

[42]  R Baumgartner,et al.  Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis. , 2000, Magnetic resonance imaging.

[43]  N. Ward,et al.  Plasticity and the functional reorganization of the human brain. , 2005, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[44]  P Turski,et al.  Effect of focal and nonfocal cerebral lesions on functional connectivity studied with MR imaging. , 2001, AJNR. American journal of neuroradiology.

[45]  Lee M. Miller,et al.  Measuring temporal dynamics of functional networks using phase spectrum of fMRI data , 2005, NeuroImage.

[46]  Leslie G. Ungerleider,et al.  A neural system for human visual working memory. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. Doyon,et al.  Reorganization and plasticity in the adult brain during learning of motor skills , 2005, Current Opinion in Neurobiology.

[48]  Lee M. Miller,et al.  Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data , 2004, NeuroImage.

[49]  F. T. Husain,et al.  Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study , 2004, NeuroImage.

[50]  Karl J. Friston,et al.  Functional Connectivity: Eigenimages and multivariate analyses , 2003 .

[51]  G. Jackson,et al.  Effect of prior cognitive state on resting state networks measured with functional connectivity , 2005, Human brain mapping.

[52]  F. Sommer,et al.  Global Relationship between Anatomical Connectivity and Activity Propagation in the Cerebral Cortex , 2022 .

[53]  S. Bressler Large-scale cortical networks and cognition , 1995, Brain Research Reviews.

[54]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[55]  Robert Oostenveld,et al.  Neural Mechanisms of Visual Attention : How Top-Down Feedback Highlights Relevant Locations , 2007 .

[56]  Karl J. Friston,et al.  Evaluation of different measures of functional connectivity using a neural mass model , 2004, NeuroImage.

[57]  P. Fransson How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations , 2006, Neuropsychologia.

[58]  Malcolm P. Young,et al.  Objective analysis of the topological organization of the primate cortical visual system , 1992, Nature.

[59]  Guido Nolte,et al.  Synchronization of parietal and premotor areas during preparation and execution of praxis hand movements , 2005, Clinical Neurophysiology.

[60]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[61]  L. K. Hansen,et al.  On Clustering fMRI Time Series , 1999, NeuroImage.

[62]  Nikos K Logothetis,et al.  On the nature of the BOLD fMRI contrast mechanism. , 2004, Magnetic resonance imaging.

[63]  Anthony Randal McIntosh,et al.  Towards a network theory of cognition , 2000, Neural Networks.

[64]  Scott T. Grafton,et al.  Response to Comment on "Wandering Minds: The Default Network and Stimulus-Independent Thought" , 2007, Science.

[65]  Habib Benali,et al.  CORSICA: correction of structured noise in fMRI by automatic identification of ICA components. , 2007, Magnetic resonance imaging.

[66]  Fahmeed Hyder,et al.  Energetic basis of brain activity: implications for neuroimaging , 2004, Trends in Neurosciences.

[67]  O. Sporns,et al.  Identification and Classification of Hubs in Brain Networks , 2007, PloS one.

[68]  J. Schmee An Introduction to Multivariate Statistical Analysis , 1986 .

[69]  Rainer Goebel,et al.  Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. , 2003, Magnetic resonance imaging.

[70]  Carl-Fredrik Westin,et al.  Resampling fMRI time series , 2005, NeuroImage.

[71]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[72]  Aapo Hyvärinen,et al.  Validating the independent components of neuroimaging time series via clustering and visualization , 2004, NeuroImage.

[73]  T. Goschke,et al.  Executive control emerging from dynamic interactions between brain systems mediating language, working memory and attentional processes. , 2004, Acta psychologica.

[74]  E. Bullmore,et al.  Adaptive reconfiguration of fractal small-world human brain functional networks , 2006, Proceedings of the National Academy of Sciences.

[75]  C. Basar-Eroglu,et al.  Gamma response of the brain: a multifunctional oscillation that represents bottom-up with top-down processing. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[76]  Antony Unwin,et al.  Graphics of a Large Dataset , 2006 .

[77]  Emanuelle Reynaud,et al.  Detecting functional nodes in large‐scale cortical networks with functional magnetic resonance imaging: A principal component analysis of the human visual system , 2007, Human brain mapping.

[78]  A. Luria,et al.  The functional organization of the brain. , 1970, Scientific American.

[79]  Martin Lepage,et al.  Neural Correlates of Memory for Items and for Associations: An Event-related Functional Magnetic Resonance Imaging Study , 2005, Journal of Cognitive Neuroscience.

[80]  T. Adali,et al.  Latency (in)sensitive ICA Group independent component analysis of fMRI data in the temporal frequency domain , 2003, NeuroImage.

[81]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[82]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[83]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[84]  Yongmei Michelle Wang,et al.  Functional Interactivity in fMRI Using Multiple Seeds' Correlation Analyses - Novel Methods and Comparisons , 2007, IPMI.

[85]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[86]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[87]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[88]  R Baumgartner,et al.  A hierarchical clustering method for analyzing functional MR images. , 1999, Magnetic resonance imaging.

[89]  M. A. O'Neil,et al.  The connectional organization of the cortico-thalamic system of the cat. , 1999, Cerebral cortex.

[90]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Barry Horwitz,et al.  Relating fMRI and PET signals to neural activity by means of large-scale neural models , 2007, Neuroinformatics.

[92]  J. Pekar,et al.  fMRI Activation in a Visual-Perception Task: Network of Areas Detected Using the General Linear Model and Independent Components Analysis , 2001, NeuroImage.

[93]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[94]  P. Strick,et al.  The cerebellum communicates with the basal ganglia , 2005, Nature Neuroscience.

[95]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[96]  A. Andersen,et al.  Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework. , 1999, Magnetic resonance imaging.

[97]  P. Fransson Spontaneous low‐frequency BOLD signal fluctuations: An fMRI investigation of the resting‐state default mode of brain function hypothesis , 2005, Human brain mapping.

[98]  Justin L. Vincent,et al.  Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Leslie G. Ungerleider,et al.  Network analysis of cortical visual pathways mapped with PET , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[101]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.

[102]  J. Haxby,et al.  Localization of Cardiac-Induced Signal Change in fMRI , 1999, NeuroImage.

[103]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[104]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[105]  Timothy Edward John Behrens,et al.  Relating connectional architecture to grey matter function using diffusion imaging , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[106]  Karl J. Friston,et al.  Modelling functional integration: a comparison of structural equation and dynamic causal models , 2004, NeuroImage.

[107]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[108]  H. Künzle An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in macaca fascicularis. , 1978, Brain, behavior and evolution.

[109]  M. Hallett,et al.  Aging influence on functional connectivity of the motor network in the resting state , 2007, Neuroscience Letters.

[110]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[111]  H. Benali,et al.  Exploring large-scale brain networks in functional MRI , 2006, Journal of Physiology-Paris.

[112]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[113]  D Le Bihan,et al.  Postoperative speech disorder after medial frontal surgery , 2003, Neurology.

[114]  Karl J. Friston,et al.  Effective Connectivity and Intersubject Variability: Using a Multisubject Network to Test Differences and Commonalities , 2002, NeuroImage.

[115]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[116]  Marcus E Raichle,et al.  Neuroscience. The brain's dark energy. , 2006, Science.

[117]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[118]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[119]  E. Miller,et al.  Response to Comment on "Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices" , 2007, Science.

[120]  N. Logothetis,et al.  The effect of artifacts on dependence measurement in fMRI. , 2006, Magnetic resonance imaging.

[121]  Scott J Peltier,et al.  Detecting low‐frequency functional connectivity in fMRI using a self‐organizing map (SOM) algorithm , 2003, Human brain mapping.

[122]  C. Stam,et al.  Small-world networks and disturbed functional connectivity in schizophrenia , 2006, Schizophrenia Research.

[123]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[124]  M. Lowe,et al.  Functional Connectivity in Single and Multislice Echoplanar Imaging Using Resting-State Fluctuations , 1998, NeuroImage.

[125]  B. Biswal,et al.  Simultaneous assessment of flow and BOLD signals in resting‐state functional connectivity maps , 1997, NMR in biomedicine.

[126]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[127]  Kai-Hsiang Chuang,et al.  Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy C-means , 1999, IEEE Transactions on Medical Imaging.

[128]  S. Strogatz Exploring complex networks , 2001, Nature.

[129]  P. Strick,et al.  Imaging the premotor areas , 2001, Current Opinion in Neurobiology.

[130]  M Schürmann,et al.  The selectively distributed theta system: functions. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[131]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[132]  Irene Tracey,et al.  Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal , 2004, NeuroImage.

[133]  Habib Benali,et al.  Regions, systems, and the brain: Hierarchical measures of functional integration in fMRI , 2008, Medical Image Anal..

[134]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[135]  E. Bullmore,et al.  Undirected graphs of frequency-dependent functional connectivity in whole brain networks , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[136]  J. Gotman,et al.  Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[137]  Stephen M. Smith,et al.  fMRI resting state networks define distinct modes of long-distance interactions in the human brain , 2006, NeuroImage.

[138]  T E Lund,et al.  fcMRI—Mapping functional connectivity or correlating cardiac‐induced noise? , 2001, Magnetic resonance in medicine.

[139]  Tulay Adali,et al.  A method for comparing group fMRI data using independent component analysis: application to visual, motor and visuomotor tasks. , 2004, Magnetic resonance imaging.

[140]  R. Baumgartner,et al.  Correlator Beware: Correlation Has Limited Selectivity for fMRI Data Analysis , 2000, NeuroImage.

[141]  R. Poldrack Imaging Brain Plasticity: Conceptual and Methodological Issues— A Theoretical Review , 2000, NeuroImage.

[142]  M. Mintun,et al.  Brain work and brain imaging. , 2006, Annual review of neuroscience.

[143]  N. Logothetis,et al.  Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. , 2003, Cerebral cortex.

[144]  Karl J. Friston,et al.  Assessing interactions among neuronal systems using functional neuroimaging , 2000, Neural Networks.

[145]  E. Basar,et al.  Gamma, alpha, delta, and theta oscillations govern cognitive processes. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[146]  F. Gonzalez-Lima,et al.  Structural equation modeling and its application to network analysis in functional brain imaging , 1994 .

[147]  D. Gounot,et al.  Functional integration in schizophrenia: too little or too much? Preliminary results on fMRI data , 2005, NeuroImage.

[148]  R. Knight Neural Networks Debunk Phrenology , 2007, Science.

[149]  I. K. Wood,et al.  Neuroscience: Exploring the brain , 1996 .

[150]  D. Le Bihan,et al.  Role of the supplementary motor area in motor deficit following medial frontal lobe surgery , 2001, Neurology.

[151]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[152]  Benjamin J. Shannon,et al.  Coherent spontaneous activity identifies a hippocampal-parietal memory network. , 2006, Journal of neurophysiology.

[153]  G. Glover,et al.  Physiological noise in oxygenation‐sensitive magnetic resonance imaging , 2001, Magnetic resonance in medicine.

[154]  R. Goebel,et al.  Investigating directed influences between activated brain areas in a motor-response task using fMRI. , 2006, Magnetic resonance imaging.

[155]  E. Bullmore,et al.  Functional Magnetic Resonance Image Analysis of a Large-Scale Neurocognitive Network , 1996, NeuroImage.

[156]  Allen R. Braun,et al.  Brain network interactions in auditory, visual and linguistic processing , 2004, Brain and Language.

[157]  Pierre Bellec,et al.  A BOOTSTRAP TEST TO INVESTIGATE CHANGES IN BRAIN CONNECTIVITY FOR FUNCTIONAL MRI , 2008 .

[158]  L. Nyberg,et al.  Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? , 2005, Consciousness and Cognition.

[159]  M Schürmann,et al.  Functional aspects of alpha oscillations in the EEG. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[160]  Karl J. Friston,et al.  PHRENOLOGY : What Can Neuroimaging Tell Us About Distributed Circuitry ? , 2005 .

[161]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[162]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[163]  R. Poldrack Can cognitive processes be inferred from neuroimaging data? , 2006, Trends in Cognitive Sciences.

[164]  B. Horwitz,et al.  Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. , 1998, Cerebral cortex.

[165]  Seunghwan Kim,et al.  Self-organized criticality and scale-free properties in emergent functional neural networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[166]  Dietmar Cordes,et al.  Hierarchical clustering to measure connectivity in fMRI resting-state data. , 2002, Magnetic resonance imaging.

[167]  M. Greicius,et al.  Default-Mode Activity during a Passive Sensory Task: Uncoupled from Deactivation but Impacting Activation , 2004, Journal of Cognitive Neuroscience.

[168]  G. Leichnetz Afferent and efferent connections of the dorsolateral precentral gyrus (area 4, hand/arm region) in the macaque monkey, with comparisons to area 8 , 1986, The Journal of comparative neurology.

[169]  Tulay Koru-Sengul,et al.  Graphics of Large Datasets: Visualizing a Million , 2007, Technometrics.

[170]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[171]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[172]  E. Formisano,et al.  Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest , 2004, Human brain mapping.

[173]  E. Vogel,et al.  Interactions between attention and working memory , 2006, Neuroscience.

[174]  K Herholz,et al.  Plasticity of language networks in patients with brain tumors: A positron emission tomography activation study , 2001, Annals of neurology.

[175]  I. Jolliffe Principal Component Analysis , 2002 .

[176]  Karl J. Friston,et al.  Functional topography: multidimensional scaling and functional connectivity in the brain. , 1996, Cerebral cortex.

[177]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[178]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[179]  M. Sur,et al.  Plasticity and specificity of cortical processing networks , 2006, Trends in Neurosciences.

[180]  Heike Hofmann,et al.  Graphics of Large Datasets: Visualizing a Million (Statistics and Computing) , 2006 .

[181]  L. Shah,et al.  Functional magnetic resonance imaging. , 2010, Seminars in roentgenology.

[182]  S. Bressler,et al.  Operational principles of neurocognitive networks. , 2006, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[183]  D. P. Russell,et al.  Functional Clustering: Identifying Strongly Interactive Brain Regions in Neuroimaging Data , 1998, NeuroImage.

[184]  Marcus Kaiser,et al.  Modelling the development of cortical systems networks , 2004, Neurocomputing.

[185]  M. Raichle,et al.  Searching for a baseline: Functional imaging and the resting human brain , 2001, Nature Reviews Neuroscience.

[186]  Biyu J. He,et al.  Breakdown of Functional Connectivity in Frontoparietal Networks Underlies Behavioral Deficits in Spatial Neglect , 2007, Neuron.

[187]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[188]  Benjamin J. Shannon,et al.  Molecular, Structural, and Functional Characterization of Alzheimer's Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory , 2005, The Journal of Neuroscience.

[189]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[190]  J. Pekar,et al.  A method for making group inferences from functional MRI data using independent component analysis , 2001, Human brain mapping.

[191]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[192]  E. Basar,et al.  Are cognitive processes manifested in event-related gamma, alpha, theta and delta oscillations in the EEG? , 1999, Neuroscience Letters.

[193]  Yul-Wan Sung,et al.  Functional magnetic resonance imaging , 2004, Scholarpedia.

[194]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.