Global water cycle and the coevolution of the Earth’s interior and surface environment

The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth’s history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3−4.5×1014 g yr−1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.

[1]  G. Schubert,et al.  Thermal Evolution of the Earth: Effects of Volatile Exchange Between Atmosphere and Interior , 1988 .

[2]  L. Kump The Role of Seafloor Hydrothermal Systems in the Evolution of Seawater Composition During the Phanerozoic , 2013 .

[3]  D. Canfield,et al.  Atmospheric oxygenation three billion years ago , 2013, Nature.

[4]  R. Hemley,et al.  Hydrogen in the Deep Earth , 2001 .

[5]  J. Kirschvink,et al.  True Polar Wander: Linking Deep and Shallow Geodynamics to Hydro- and Biospheric Hypotheses , 2007 .

[6]  MathewDomeier Plate tectonics in the late Paleozoic , 2014 .

[7]  D. Grandstaff,et al.  Chemistry and mineralogy of Precambrian paleosols at the base of the Dominion and Pongola Groups (Transvaal, South Africa) , 1986 .

[8]  I. Katayama,et al.  Is the African cratonic lithosphere wet or dry , 2011 .

[9]  I. Campbell CONSTRAINTS ON CONTINENTAL GROWTH MODELS FROM Nb/U RATIOS IN THE 3.5 Ga BARBERTON AND OTHER ARCHAEAN BASALT-KOMATIITE SUITES , 2003 .

[10]  P. Hoffman,et al.  Coronation loop resurrected: Oscillatory apparent polar wander of Orosirian (2.05-1.8 Ga) paleomagnetic poles from Slave craton , 2010 .

[11]  M. Bazhenov,et al.  Late Ediacaran magnetostratigraphy of Baltica: Evidence for Magnetic Field Hyperactivity? , 2016 .

[12]  P. Bots,et al.  The role of SO4 in the switch from calcite to aragonite seas , 2011 .

[13]  J. Kasting Evolution of a habitable planet , 2003 .

[14]  Maisha Amaru,et al.  Towards absolute plate motions constrained by lower-mantle slab remnants , 2010 .

[15]  D. Evans True polar wander and supercontinents , 2002 .

[16]  D. Evans True polar wander, a supercontinental legacy , 1998 .

[17]  P. Smaglik A global view , 2005, Nature.

[18]  R. Carlson,et al.  Physical, chemical, and chronological characteristics of continental mantle , 2005 .

[19]  U. Christensen,et al.  Mantle convection and stability of depleted and undepleted continental lithosphere , 1997 .

[20]  R. Voo,et al.  Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis , 2010 .

[21]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[22]  J. Korenaga Archean Geodynamics and the Thermal Evolution of Earth , 2013 .

[23]  K. Hirose,et al.  Composition and State of the Core , 2013 .

[24]  Amir Khan,et al.  A geophysical perspective on mantle water content and melting: Inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles , 2012 .

[25]  Bernard Marty The origins and concentrations of water, carbon, nitrogen and noble gases on Earth , 2012 .

[26]  J. Korenaga Energetics of mantle convection and the fate of fossil heat , 2003 .

[27]  F. Albarède,et al.  A Zn isotope perspective on the rise of continents , 2013, Geobiology.

[28]  T. Yoshino,et al.  Electrical Conductivity of Mantle Minerals: Role of Water in Conductivity Anomalies , 2013 .

[29]  Y. Abe Thermal evolution and chemical differentiation of the terrestrial magma ocean , 2013 .

[30]  Louis Moresi,et al.  Episodic Precambrian subduction , 2007 .

[31]  I. Campbell,et al.  No water, no granites - No oceans, no continents , 1983 .

[32]  G. Shields-Zhou,et al.  The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling , 2012 .

[33]  R. Mitchell,et al.  Rapid Early Cambrian rotation of Gondwana , 2010 .

[34]  S. Jacobsen,et al.  Nd and Sr isotope systematics of clastic metasediments from Isua, West Greenland: Identification of pre‐3.8 Ga Differentiated Crustal Components , 1988 .

[35]  M. Rosing,et al.  Isotope composition and volume of Earth’s early oceans , 2012, Proceedings of the National Academy of Sciences.

[36]  R. Palin,et al.  Emergence of blueschists on Earth linked to secular changes in oceanic crust composition , 2016 .

[37]  S. Hart,et al.  Silica enrichment in the continental upper mantle via melt/rock reaction , 1998 .

[38]  D. Canfield,et al.  Sulfate was a trace constituent of Archean seawater , 2014, Science.

[39]  Toby Tyrrell,et al.  The relative influences of nitrogen and phosphorus on oceanic primary production , 1999, Nature.

[40]  D. Evans Reconstructing pre-Pangean supercontinents , 2013 .

[41]  S. S. Shapiro,et al.  Stability and dynamics of the continental tectosphere , 1999 .

[42]  R. Garrels,et al.  A quantitative model for the sedimentary rock cycle , 1972 .

[43]  B. Weiss,et al.  No asymmetry in geomagnetic reversals recorded by 1.1-billion-year-old Keweenawan basalts , 2009 .

[44]  J. Grotzinger,et al.  Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? , 1996, Geology.

[45]  A. Hynes Freeboard revisited: continental growth, crustal thickness change and Earth’s thermal efficiency , 2001 .

[46]  C. Langmuir,et al.  Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt , 2002, Nature.

[47]  S. Karato Rheology of the deep upper mantle and its implications for the preservation of the continental roots: A review , 2010 .

[48]  N. Coltice,et al.  A case for late-Archaean continental emergence from thermal evolution models and hypsometry , 2008 .

[49]  Robert A. Berner,et al.  The role of magnesium in the crystal growth of calcite and aragonite from sea water , 1975 .

[50]  B. Kamber Archean mafic-ultramafic volcanic landmasses and their effect on ocean-atmosphere chemistry , 2010 .

[51]  J. O'Rourke,et al.  Terrestrial planet evolution in the stagnant-lid regime: Size effects and the formation of self-destabilizing crust , 2012, 1210.3838.

[52]  B. Wilkinson,et al.  The Paleozoic world: Continental flooding, hypsometry, and sea level , 1995 .

[53]  R. Armstrong,et al.  Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[54]  L. González,et al.  Calcite and Aragonite Precipitation Under Controlled Instantaneous Supersaturation: Elucidating the Role of CaCO3 Saturation State and Mg/Ca Ratio on Calcium Carbonate Polymorphism , 2009 .

[55]  B. Parsons Causes and consequences of the relation between area and age of the ocean floor , 1982 .

[56]  C. Harrison Constraints on ocean volume change since the Archean , 1999 .

[57]  R. Jarrard Subduction fluxes of water, carbon dioxide, chlorine, and potassium , 2002 .

[58]  T. Blake Cyclic continental mafic tuff and flood basalt volcanism in the Late Archaean Nullagine and Mount Jope Supersequences in the eastern Pilbara, Western Australia , 2001 .

[59]  J. Korenaga,et al.  Subsidence of normal oceanic lithosphere, apparent thermal expansivity, and seafloor flattening , 2008 .

[60]  岩生 周一,et al.  Heinrich D.,HOLLAND:The Chemical Evolution of the Atmosphere and Oceans , 1986 .

[61]  G. Bebout Subduction top to bottom , 1996 .

[62]  L. L. Sloss Sequences in the Cratonic Interior of North America , 1963 .

[63]  W. McDonough,et al.  The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution , 2009 .

[64]  J. Korenaga,et al.  Chemical composition of Earth's primitive mantle and its variance: 1. Method and results , 2007 .

[65]  F. R. Boyd Compositional distinction between oceanic and cratonic lithosphere , 1989 .

[66]  S. Mukhopadhyay,et al.  How large is the subducted water flux? New constraints on mantle regassing rates , 2012 .

[67]  A. Anbar,et al.  Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean , 2015, Science Advances.

[68]  J. Korenaga Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth , 2011 .

[69]  M. D. Wit,et al.  EMPLACEMENT CONDITIONS OF KOMATIITE MAGMAS FROM THE 3.49 GA KOMATI FORMATION, BARBERTON GREENSTONE BELT, SOUTH AFRICA , 1997 .

[70]  J. Kasting,et al.  What determines the volume of the oceans? , 1992, Earth and planetary science letters.

[71]  J. Veizer Strontium Isotopes in Seawater through Time , 1989 .

[72]  A. Sobolev,et al.  H2O CONCENTRATIONS IN PRIMARY MELTS FROM SUPRA-SUBDUCTION ZONES AND MID-OCEAN RIDGES : IMPLICATIONS FOR H2O STORAGE AND RECYCLING IN THE MANTLE , 1996 .

[73]  Christopher T. Reinhard,et al.  Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event , 2014 .

[74]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[75]  G. Kamenov,et al.  Paleoproterozoic mafic dyke swarms from the Dharwar craton; paleomagnetic poles for India from 2.37 to 1.88Ga and rethinking the Columbia supercontinent , 2014 .

[76]  S. Franck,et al.  Continental growth and volatile exchange during Earth's evolution , 1997 .

[77]  R. Armstrong The persistent myth of crustal growth , 1991 .

[78]  B. Mason Composition of the Earth , 1966, Nature.

[79]  J. Korenaga Urey ratio and the structure and evolution of Earth's mantle , 2008 .

[80]  J. Meert A paleomagnetic analysis of Cambrian true polar wander , 1999 .

[81]  S. Galer,et al.  Metamorphism, denudation and sea level in the Archean and cooling of the Earth , 1998 .

[82]  C. Herzberg,et al.  Formation of cratonic lithosphere: An integrated thermal and petrological model , 2012 .

[83]  L. Elkins‐Tanton Linked magma ocean solidification and atmospheric growth for Earth and Mars , 2008 .

[84]  P. Michael The concentration, behavior and storage of H2O in the suboceanic upper mantle: Implications for mantle metasomatism , 1988 .

[85]  S. Hart,et al.  Chemical structure and evolution of the mantle and continents determined by inversion of Nd and Sr isotopic data, II. Numerical experiments and discussion , 1983 .

[86]  S. Jacobsen,et al.  The Mean Age of Mantle and Crustal Reservoirs for the Planet Mars , 1979 .

[87]  W. McDonough 3.16 – Compositional Model for the Earth's Core , 2014 .

[88]  Peter A. Cawood,et al.  Late Neoproterozoic and Early Cambrian palaeogeography: models and problems , 2008 .

[89]  E. Tohver,et al.  Phanerozoic polar wander, palaeogeography and dynamics , 2012 .

[90]  D. Wise Continental Margins, Freeboard and the Volumes of Continents and Oceans Through Time , 1974 .

[91]  J. Korenaga Plate tectonics, flood basalts and the evolution of Earth’s oceans , 2008 .

[92]  J. Korenaga Initiation and Evolution of Plate Tectonics on Earth: Theories and Observations , 2013 .

[93]  C. Langmuir,et al.  Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle , 2002, Nature.

[94]  S. Gibson Major element heterogeneity in Archean to Recent mantle plume starting-heads , 2002 .

[95]  A. Hofmann,et al.  Mantle geochemistry: the message from oceanic volcanism , 1997, Nature.

[96]  J. Korenaga Seafloor topography and the thermal budget of Earth , 2015 .

[97]  W. Griffin,et al.  The density structure of subcontinental lithosphere through time , 2001 .

[98]  S. Karato Water in the Evolution of the Earth and Other Terrestrial Planets , 2015 .

[99]  C. Jaupart,et al.  Heat Flow and Thermal Structure of the Lithosphere , 2015 .

[100]  B. Marty,et al.  The nitrogen record of crust–mantle interaction and mantle convection from Archean to Present , 2003 .

[101]  S. Reddy,et al.  Metallogeny and its link to orogenic style during the Nuna supercontinent cycle , 2015, Special Publications.

[102]  J. Kasting,et al.  The faint young sun problem , 2019 .

[103]  E. Bellefroid,et al.  LATE PROTEROZOIC TRANSITIONS IN CLIMATE , OXYGEN , AND TECTONICS , AND THE RISE OF COMPLEX LIFE , 2015 .

[104]  A. T. Anderson,et al.  Alteration of oceanic crust and geologic cycling of chlorine and water , 1983 .

[105]  J. Korenaga Effective thermal expansivity of Maxwellian oceanic lithosphere , 2007 .

[106]  J. Tarduno,et al.  A stable Ediacaran Earth recorded by single silicate crystals of the ca. 565 Ma Sept-Îles intrusion , 2015 .

[107]  P. Richet,et al.  Thermal expansion of forsterite up to the melting point , 1996 .

[108]  L. Derry Causes and consequences of mid‐Proterozoic anoxia , 2015 .

[109]  W. Bleeker,et al.  Plate tectonics before 2.0 Ga: Evidence from paleomagnetism of cratons within supercontinent Nuna , 2014, American Journal of Science.

[110]  F. Birch,et al.  Density and composition of mantle and core , 1964 .

[111]  Paul B. Hays,et al.  A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature , 1981 .

[112]  J. Grotzinger,et al.  Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand‐Malmani Platform, South Africa , 2004 .

[113]  C. Herzberg,et al.  Thermal history of the Earth and its petrological expression , 2010 .

[114]  O. Catuneanu,et al.  Precambrian continental freeboard and geological evolution: A time perspective , 2006 .

[115]  D. Champion,et al.  Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia , 2007 .

[116]  R. Mitchell,et al.  Supercontinent cycles and the calculation of absolute palaeolongitude in deep time , 2012, Nature.

[117]  A. Jambon,et al.  Water in oceanic basalts: evidence for dehydration of recycled crust , 1990 .

[118]  D. Pearson The age of continental roots , 1999 .

[119]  G. Schubert,et al.  Continental volume and freeboard through geological time , 1985, Nature.

[120]  Nicolas Flament,et al.  A review of observations and models of dynamic topography , 2013 .

[121]  A. Kuvshinov,et al.  Deep Electromagnetic Studies from Land, Sea, and Space: Progress Status in the Past 10 Years , 2011, Surveys in Geophysics.

[122]  T. Jordan Mineralogies, Densities and Seismic Velocities of Garnet Lherzolites and their Geophysical Implications , 2013 .

[123]  S. Gardoll,et al.  Is the rate of supercontinent assembly changing with time , 2015 .

[124]  F. Robert,et al.  The hydrogen isotope composition of seawater and the global water cycle , 1998 .

[125]  P. Philippot,et al.  Ubiquitous occurrence of basaltic-derived paleosols in the Late Archean Fortescue Group, Western Australia , 2015 .

[126]  B. Parsons The rates of plate creation and consumption , 1981 .

[127]  G. Bebout Volatile Transfer and Recycling at Convergent Margins: Mass‐Balance and Insights from High‐P/T Metamorphic Rocks , 2013 .

[128]  J. Kirschvink,et al.  Low-latitude glaciation in the Palaeoproterozoic era , 1997, Nature.

[129]  K. Hirose,et al.  Cr-spinel, an excellent micro-container for retaining primitive melts – implications for a hydrous plume origin for komatiites , 2001 .

[130]  D. Schrag,et al.  Regulation of atmospheric oxygen during the Proterozoic , 2012 .

[131]  R. V. Demicco,et al.  Oscillations in Phanerozoic Seawater Chemistry: Evidence from Fluid Inclusions , 2001, Science.

[132]  B. Marty,et al.  Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assesment of shallow-level fractionation and characterization of source composition , 1999 .

[133]  Francis Codron,et al.  Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3‐D GCM , 2013, 1310.4286.

[134]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[135]  F. Albarède,et al.  Were komatiites wet , 1998 .

[136]  M. Hamilton,et al.  A paleomagnetic and U–Pb geochronology study of the western end of the Grenville dyke swarm: Rapid changes in paleomagnetic field direction at ca. 585 Ma related to polarity reversals? , 2015 .

[137]  S. Karato,et al.  Water distribution across the mantle transition zone and its implications for global material circulation , 2011 .

[138]  Matthias Hort,et al.  Serpentine and the subduction zone water cycle , 2004 .

[139]  H. D. Holland,et al.  Paleosols and the evolution of atmospheric oxygen: a critical review. , 1998, American journal of science.

[140]  E. Bonatti,et al.  Post-Mesozoic Rapid Increase of Seawater Mg/Ca due to Enhanced Mantle-Seawater Interaction , 2013, Scientific Reports.

[141]  B. Eakins,et al.  Volumes of the World's Oceans From ETOPO2v2 , 2007 .

[142]  S. Taylor,et al.  Geochemical Constraints on the Growth of the Continental Crust , 1982, The Journal of Geology.

[143]  O. Anderson,et al.  Another look at the core density deficit of Earth’s outer core , 2002 .

[144]  J F Nunn,et al.  Evolution of the atmosphere. , 1998, Proceedings of the Geologists' Association. Geologists' Association.

[145]  P. Wallace Water and partial melting in mantle plumes: Inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas , 1998 .

[146]  R. Garrels,et al.  The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years , 1983 .

[147]  M. Hirschmann,et al.  The H/C ratios of Earth's near-surface and deep reservoirs, and consequences for deep Earth volatile cycles , 2009 .

[148]  N. Nhleko The Pongola Supergroup in Swaziland , 2009 .

[149]  T. Zegers,et al.  Palaeomagnetism of flood basalts in the Pilbara Craton, Western Australia: Late Archaean continental drift and the oldest known reversal of the geomagnetic field , 2003 .

[150]  R. Hékinian,et al.  Degassing of CO2 and H2O in submarine lavas from the Society hotspot , 2005 .

[151]  N. Arndt Why was flood volcanism on submerged continental platforms so common in the Precambrian , 1999 .

[152]  Charles H. Langmuir,et al.  The mean composition of ocean ridge basalts , 2013 .

[153]  D. Bradley Passive margins through earth history , 2008 .

[154]  J. Korenaga Scaling of plate-tectonic convection with pseudoplastic rheology , 2010, 1008.4782.

[155]  Paul D. Asimow,et al.  Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites , 2007 .

[156]  J. Kasting,et al.  Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. , 2002, Astrobiology.

[157]  L. Hardie Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. , 1996 .

[158]  Jun Korenaga,et al.  Thermal cracking and the deep hydration of oceanic lithosphere: A key to the generation of plate tectonics? , 2007 .

[159]  P. Hurley,et al.  Pre-drift continental nuclei. , 1969, Science.

[160]  Cin-Ty A. Lee Compositional variation of density and seismic velocities in natural peridotites at STP conditions: Implications for seismic imaging of compositional heterogeneities in the upper mantle , 2003 .

[161]  Walter D. Mooney,et al.  Seismic velocity structure and composition of the continental crust: A global view , 1995 .

[162]  G. Shields,et al.  Precambrian marine carbonate isotope database: Version 1.1 , 2002 .

[163]  T. Jordan Structure and Formation of the Continental Tectosphere , 1988 .

[164]  J. Korenaga,et al.  Chemical composition of Earth's primitive mantle and its variance: 2. Implications for global geodynamics , 2007 .

[165]  R. Berner The phanerozoic carbon cycle : CO[2] and O[2] , 2004 .

[166]  W. Griffin,et al.  The growth of the continental crust: Constraints from zircon Hf-isotope data , 2010 .