Identification of Hammerstein models using multivariate statistical tools

The iterative Narendra-Gallman algorithm (NGA) for the identification of a nonlinear system representable by the Hammerstein structure is extended to perform simultaneous structure determination and parameter estimation of multivariable chemical process systems. The parameters of the linear system obtained in state space form using canonical correlations analysis and the coefficients of the polynomial type nonlinear elements are alternately adjusted, until convergence, to obtain the model. The theory is illustrated using data from an experimental heat exchanger and the simulation example of a realistically complex acid-base neutralization tank.

[1]  L. Mcbride,et al.  A technique for the identification of linear systems , 1965 .

[2]  Robert H. Shumway,et al.  Improved estimators of Kullback-Leibler information for autoregressive model selection in small samples , 1990 .

[3]  Lang Zi-Qiang,et al.  On identification of the controlled plants described by the Hammerstein system , 1994 .

[4]  S. Billings,et al.  Non-linear system identification using the Hammerstein model , 1979 .

[5]  R. Luus,et al.  Nonlinear identification in the presence of correlated noise using a Hammerstein model , 1973 .

[6]  D. G. Fisher,et al.  Simultaneous structure identification and parameter estimation of multivariable systems , 1994 .

[7]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[8]  Wallace E. Larimore,et al.  Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.

[9]  P. Gallman A comparison of two Hammerstein model identification algorithms , 1976 .

[10]  Jim V. Candy,et al.  Invariant system description of the stochastic realization , 1979, Autom..

[11]  Zhu Xue-feng,et al.  Nonlinear Predictive Control Based on Hammerstein Models , 1994 .

[12]  Dale E. Seborg,et al.  Identification of chemical processes using canonical variate analysis , 1994 .

[13]  Dale E. Seborg,et al.  Adaptive nonlinear control of a pH neutralization process , 1994, IEEE Trans. Control. Syst. Technol..

[14]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[15]  S. Mahmood,et al.  Multivariable adaptive model algorithmic control , 1984, The 23rd IEEE Conference on Decision and Control.

[16]  Yaman Arkun,et al.  Control of nonlinear systems using polynomial ARMA models , 1993 .

[17]  R. Luus,et al.  A noniterative method for identification using Hammerstein model , 1971 .

[18]  William L. Luyben,et al.  Nonlinear auto-tune identification , 1994 .

[19]  A. Çinar Nonlinear time series models for multivariable dynamic processes , 1995 .

[20]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[21]  Shaohua Niu Augmented UD identification for process control , 1994 .