Variable-step finite difference schemes for the solution of Sturm-Liouville problems

We discuss the solution of regular and singular Sturm–Liouville problems by means of High Order Finite Difference Schemes. We describe a method to define a discrete problem and its numerical solution by means of linear algebra techniques. Different test problems are considered to emphasize the behavior of a code based on the proposed algorithm. The methods solve any regular or singular Sturm–Liouville problem, providing high accuracy and computational efficiency thanks to the powerful strategy of stepsize variation.

[1]  Robert S. Anderssen,et al.  On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems , 1981, Computing.

[2]  Ewa Weinmüller,et al.  Numerical simulation of the whispering gallery modes in prolate spheroids , 2014, Comput. Phys. Commun..

[3]  J. Pryce,et al.  LCNO Sturm-Liouville problems: computational difficulties and examples , 1995 .

[4]  Pierluigi Amodio,et al.  High Order Finite Difference Schemes for the Numerical Solution of Eigenvalue Problems for IVPs in ODEs , 2010 .

[5]  Ewa Weinmüller,et al.  On the calculation of the finite Hankel transform eigenfunctions , 2013 .

[6]  Lidia Aceto,et al.  Boundary Value Methods as an extension of Numerov's method for Sturm--Liouville eigenvalue estimates , 2009 .

[7]  L. Brugnano,et al.  Solving differential problems by multistep initial and boundary value methods , 1998 .

[8]  Lidia Aceto,et al.  An Algebraic Procedure for the Spectral Corrections Using the Miss-Distance Functions in Regular and Singular Sturm-Liouville Problems , 2006, SIAM J. Numer. Anal..

[9]  Marco Marletta Certification of algorithm 700 numerical tests of the SLEIGN software for Sturm-Liouville problems , 1991, TOMS.

[10]  Pierluigi Amodio,et al.  High order generalized upwind schemes and numerical solution of singular perturbation problems , 2007 .

[11]  Steven Pruess,et al.  Mathematical software for Sturm-Liouville problems , 1993, TOMS.

[12]  Pierluigi Amodio,et al.  High-order finite difference schemes for the solution of second-order BVPs , 2005 .

[13]  Paul B. Bailey,et al.  Eigenvalue and eigenfunction computations for Sturm-Liouville problems , 1991, TOMS.

[14]  Steven Pruess,et al.  Estimating the Eigenvalues of Sturm–Liouville Problems by Approximating the Differential Equation , 1973 .

[15]  Anton Zettl,et al.  Sturm-Liouville theory , 2005 .

[16]  W. Norrie Everitt,et al.  A Catalogue of Sturm-Liouville Differential Equations , 2005 .

[17]  Guido Vanden Berghe,et al.  MATSLISE: A MATLAB package for the numerical solution of Sturm-Liouville and Schrödinger equations , 2005, TOMS.

[18]  Paul B. Bailey,et al.  Algorithm 810: The SLEIGN2 Sturm-Liouville Code , 2001, TOMS.

[19]  Pierluigi Amodio,et al.  A Matrix Method for the Solution of Sturm-Liouville Problems 1 , 2011 .

[20]  John D. Pryce,et al.  A test package for Sturm-Liouville solvers , 1999, TOMS.

[21]  Lidia Aceto,et al.  BVMs for Sturm-Liouville Eigenvalue Estimates with General Boundary Conditions , 2009 .

[22]  Giuseppina Settanni,et al.  Variable Step/Order Generalized Upwind Methods for the Numerical Solution of Second Order Singular Perturbation Problems 1 2 , 2009 .

[23]  J. Pryce Numerical Solution of Sturm-Liouville Problems , 1994 .

[24]  Othmar Koch,et al.  Asymptotical computations for a model of flow in saturated porous media , 2014, Appl. Math. Comput..

[25]  Alan L. Andrew,et al.  Correction of Numerov's eigenvalue estimates , 1985 .

[26]  John D. Pryce,et al.  Automatic solution of Sturm-Liouville problems using the Pruess method , 1992 .

[27]  Lawrence F. Shampine,et al.  Automatic Solution of the Sturm-Liouville Problem , 1978, TOMS.

[28]  Pierluigi Amodio,et al.  A Deferred Correction Approach to the Solution of Singularly Perturbed BVPs by High Order Upwind Methods: Implementation Details , 2009 .

[29]  H. De Meyer,et al.  SLCPM12 - A program for solving regular Sturm-Liouville problems. , 1999 .