Polynomial Interpolation and Approximation in C^d

We update the state of the subject approximately 20 years after the publication of a previous article on this topic. This report is mostly a survey, with a sprinkling of assorted new results throughout.

[1]  Vilmos Totik,et al.  Asymptotics for Christoffel functions for general measures on the real line , 2000 .

[2]  J. Siciak Extremal plurisubharmonic functions in $C^N$ , 1981 .

[3]  On growth of norms of Newton interpolating operators , 2009 .

[4]  T. Bloom,et al.  The distribution of extremal points for Kergin interpolations: real case , 1998 .

[5]  M. Andersson,et al.  Complex Kergin Interpolation , 1991 .

[6]  Robert Berman,et al.  Growth of balls of holomorphic sections and energy at equilibrium , 2008, 0803.1950.

[7]  T. J. Rivlin An Introduction to the Approximation of Functions , 2003 .

[8]  Len Bos,et al.  Polynomial Interpretation of Holomorphic Functions in $\c$ and $\c^n$ , 1992 .

[9]  Jean-Paul Calvi,et al.  Intertwining unisolvent arrays for multivariate Lagrange interpolation , 2005, Adv. Comput. Math..

[10]  Marco Vianello,et al.  Bivariate Lagrange interpolation at the Padua points: The generating curve approach , 2006, J. Approx. Theory.

[11]  Alvise Sommariva,et al.  Computing approximate Fekete points by QR factorizations of Vandermonde matrices , 2009, Comput. Math. Appl..

[12]  Marco Vianello,et al.  Algorithm xxx: Padua2D: Lagrange Interpolation at Padua Points on Bivariate Domains , 2008 .

[13]  Alvise Sommariva,et al.  Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points , 2011, Math. Comput..

[14]  Marco Vianello,et al.  Bivariate Lagrange interpolation at the Padua points: the ideal theory approach , 2007, Numerische Mathematik.

[15]  Marco Vianello,et al.  Bivariate Lagrange interpolation at the Padua points: Computational aspects , 2008 .

[16]  Kergin Interpolants of Holomorphic Functions , 1997 .

[17]  J. Siciak On some extremal functions and their applications in the theory of analytic functions of several complex variables , 1962 .

[18]  Vilmos Totik,et al.  Lebesgue constants for Leja points , 2010 .

[19]  Norm Levenberg,et al.  WEIGHTED PLURIPOTENTIAL THEORY RESULTS OF BERMAN-BOUCKSOM , 2010, 1010.4035.

[20]  Jean-Paul Calvi,et al.  Uniform approximation by discrete least squares polynomials , 2008, J. Approx. Theory.

[21]  T. Bloom On families of polynomials which approximate the pluricomplex Green function , 2001 .

[22]  Weighted polynomials and weighted pluripotential theory , 2006, math/0610330.

[23]  R. Sigurdsson,et al.  Complex Convexity and Analytic Functionals , 2004 .

[24]  Alvise Sommariva,et al.  Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra , 2010, SIAM J. Numer. Anal..

[25]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[26]  Charles A Micchelli,et al.  A Constructive Approach to Kergin Interpolation in R(k). , 1978 .

[27]  V P Zaharjuta,et al.  TRANSFINITE DIAMETER, ČEBYŠEV CONSTANTS, AND CAPACITY FOR COMPACTA IN , 1975 .

[28]  T. Bloom,et al.  Transfinite diameter notions in ℂN and integrals of Vandermonde determinants , 2007, 0712.2844.

[29]  Jean-Paul Calvi,et al.  On the Lebesgue constant of Leja sequences for the unit disk and its applications to multivariate interpolation , 2011, J. Approx. Theory.

[30]  N. Levenberg,et al.  Weighted pluripotential theory in CN , 2003 .

[31]  A Sadullaev AN ESTIMATE FOR POLYNOMIALS ON ANALYTIC SETS , 1983 .

[32]  Tom Bloom,et al.  Pluripotential energy and large deviation , 2011, 1110.6593.