Polynomial Interpolation and Approximation in C^d
暂无分享,去创建一个
T. Bloom | N. Levenberg | N. Levenberg | T. Bloom | L. Bos | Jean-Paul Calvi | L. P. Bos | J.-P. Calvi
[1] Vilmos Totik,et al. Asymptotics for Christoffel functions for general measures on the real line , 2000 .
[2] J. Siciak. Extremal plurisubharmonic functions in $C^N$ , 1981 .
[3] On growth of norms of Newton interpolating operators , 2009 .
[4] T. Bloom,et al. The distribution of extremal points for Kergin interpolations: real case , 1998 .
[5] M. Andersson,et al. Complex Kergin Interpolation , 1991 .
[6] Robert Berman,et al. Growth of balls of holomorphic sections and energy at equilibrium , 2008, 0803.1950.
[7] T. J. Rivlin. An Introduction to the Approximation of Functions , 2003 .
[8] Len Bos,et al. Polynomial Interpretation of Holomorphic Functions in $\c$ and $\c^n$ , 1992 .
[9] Jean-Paul Calvi,et al. Intertwining unisolvent arrays for multivariate Lagrange interpolation , 2005, Adv. Comput. Math..
[10] Marco Vianello,et al. Bivariate Lagrange interpolation at the Padua points: The generating curve approach , 2006, J. Approx. Theory.
[11] Alvise Sommariva,et al. Computing approximate Fekete points by QR factorizations of Vandermonde matrices , 2009, Comput. Math. Appl..
[12] Marco Vianello,et al. Algorithm xxx: Padua2D: Lagrange Interpolation at Padua Points on Bivariate Domains , 2008 .
[13] Alvise Sommariva,et al. Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points , 2011, Math. Comput..
[14] Marco Vianello,et al. Bivariate Lagrange interpolation at the Padua points: the ideal theory approach , 2007, Numerische Mathematik.
[15] Marco Vianello,et al. Bivariate Lagrange interpolation at the Padua points: Computational aspects , 2008 .
[16] Kergin Interpolants of Holomorphic Functions , 1997 .
[17] J. Siciak. On some extremal functions and their applications in the theory of analytic functions of several complex variables , 1962 .
[18] Vilmos Totik,et al. Lebesgue constants for Leja points , 2010 .
[19] Norm Levenberg,et al. WEIGHTED PLURIPOTENTIAL THEORY RESULTS OF BERMAN-BOUCKSOM , 2010, 1010.4035.
[20] Jean-Paul Calvi,et al. Uniform approximation by discrete least squares polynomials , 2008, J. Approx. Theory.
[21] T. Bloom. On families of polynomials which approximate the pluricomplex Green function , 2001 .
[22] Weighted polynomials and weighted pluripotential theory , 2006, math/0610330.
[23] R. Sigurdsson,et al. Complex Convexity and Analytic Functionals , 2004 .
[24] Alvise Sommariva,et al. Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra , 2010, SIAM J. Numer. Anal..
[25] E. Saff,et al. Logarithmic Potentials with External Fields , 1997 .
[26] Charles A Micchelli,et al. A Constructive Approach to Kergin Interpolation in R(k). , 1978 .
[27] V P Zaharjuta,et al. TRANSFINITE DIAMETER, ČEBYŠEV CONSTANTS, AND CAPACITY FOR COMPACTA IN , 1975 .
[28] T. Bloom,et al. Transfinite diameter notions in ℂN and integrals of Vandermonde determinants , 2007, 0712.2844.
[29] Jean-Paul Calvi,et al. On the Lebesgue constant of Leja sequences for the unit disk and its applications to multivariate interpolation , 2011, J. Approx. Theory.
[30] N. Levenberg,et al. Weighted pluripotential theory in CN , 2003 .
[31] A Sadullaev. AN ESTIMATE FOR POLYNOMIALS ON ANALYTIC SETS , 1983 .
[32] Tom Bloom,et al. Pluripotential energy and large deviation , 2011, 1110.6593.