A MATLAB/SIMULINK BASED ENVIRONMENT FOR INTELLIGENT MODELLING AND SIMULATION OF FLEXIBLE MANIPULATOR SYSTEMS
暂无分享,去创建一个
[1] Yung C. Shin,et al. Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems , 1994, IEEE Trans. Neural Networks.
[2] M. O. Tokhi,et al. Control of Flexible Manipulator Systems , 1996 .
[3] Tiam Lin Sze. System identification using radial basis function networks , 1995 .
[4] Fa-Long Luo,et al. Applied neural networks for signal processing , 1997 .
[5] Wayne J. Book,et al. A linear dynamic model for flexible robotic manipulators , 1987 .
[6] M. O. Tokhi,et al. Collocated and non-collocated feedback control of flexible manipulator systems , 1996 .
[7] Guy Albert Dumont,et al. System identification and control using genetic algorithms , 1992, IEEE Trans. Syst. Man Cybern..
[8] L. Ljung,et al. A system identification perspective on neural nets , 1992, Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop.
[9] Wayne J. Book,et al. Controller Design for Flexible, Distributed Parameter Mechanical Arms Via Combined State Space and Frequency Domain Techniques , 1983 .
[10] F. S. Tse. Mechanical Vibrations: Theory and Applications , 1978 .
[11] Y. H. Chen,et al. Controller Design Robust to Frequency Variation in a One-Link Flexible Robot Arm , 1989 .
[12] M. O. Tokhi,et al. SCEFMAS: An Environment for Dynamic Characterisation and Control of Flexible Robot Manipulators* , 1999 .
[13] Carlos M. Fonseca,et al. Adaptive active vibration control using genetic algorithms , 1995 .
[14] Peter J. Fleming,et al. Parallel Genetic Algorithms: A Survey , 1994 .