Investigation by Particle Image Velocimetry Measurements of Oblique Shock Reflection with Separation

The organization and length scales of turbulent structures and unsteadiness generated in a shock-wave-induced separation at Mach number of 2.3 are investigated experimentally using particle image velocimetry. Processing of the velocity fields displays and demonstrates the existence of structures in the mixing layer developed in the separation bubble. Moreover, we show in evidence a link between the reflected shock excursions and the size of the separated flow. This overview of the spatial organization of the interaction provides a more comprehensive picture of the flow. Nomenclature C f = friction coefficient L = length of the interaction M = Mach number Re = Reynolds number based on the momentum thickness S L = Strouhal number T t = stagnation temperature U 0 = upstream external velocity U ‡ = V=u u = friction velocity V = Van Driest transformed velocity X = x X 0 †=L X 0 = mean position of the reflected shock x = longitudinal coordinate Y = y= 0 y = normal to the wall coordinate y ‡ = yu = 0 = upstream boundary-layer thickness = incidence angle of the shock generator = kinematic viscosity

[1]  Minwei Wu,et al.  Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp , 2007 .

[2]  Sergio Pirozzoli,et al.  Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25 , 2006 .

[3]  David S. Dolling,et al.  Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next? , 2001 .

[4]  C. Haddad Instationnarités, mouvements d'onde de choc et tourbillons à grandes échelles dans une interaction onde de choc / couche limite avec décollement , 2005 .

[5]  Noel T. Clemens,et al.  Planar imaging measurements to study the effect of spanwise structure of upstream turbulent boundary layer on shock induced separation , 2006 .

[6]  P. Dupont,et al.  Dependence between the shock and the separation bubble in a shock wave boundary layer interaction , 2009 .

[7]  K. Sasaki,et al.  Structure of a turbulent separation bubble , 1983, Journal of Fluid Mechanics.

[8]  P. Dupont,et al.  Space and time organization in a shock-induced separated boundary layer , 2006, Journal of Fluid Mechanics.

[9]  L. Graftieaux,et al.  Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows , 2001 .

[10]  F. Scarano,et al.  Unsteady aspects of an incident shock wave/turbulent boundary layer interaction , 2009, Journal of Fluid Mechanics.

[11]  E. Reshotko,et al.  Shock-wave boundary layer interactions , 1986 .

[12]  Flint O. Thomas,et al.  On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions , 1994 .

[13]  P. Dupont,et al.  Space and time organisation of a shock wave/turbulent boundary layer interaction , 2005 .

[14]  Noel T. Clemens,et al.  Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness , 2002 .

[15]  J. Andreopoulos,et al.  Some new aspects of the shock-wave/boundary-layer interaction in compression-ramp flows , 1987, Journal of Fluid Mechanics.

[16]  J. Robinet,et al.  Bifurcations in shock-wave/laminar-boundary-layer interaction: global instability approach , 2007, Journal of Fluid Mechanics.

[17]  M. Elena,et al.  Some Turbulence Characteristics Downstream a Shock Wave - Boundary Layer Interaction , 1996 .

[18]  Jean-Paul Dussauge,et al.  Unsteadiness in shock wave boundary layer interactions with separation , 2006 .

[19]  G. Tedeschi,et al.  Motion of tracer particles in supersonic flows , 1999 .

[20]  B.H.K. Lee,et al.  Self-sustained shock oscillations on airfoils at transonic speeds , 2001 .

[21]  Minwei Wu,et al.  Direct Numerical Simulation of a Reflected-Shock-Wave/ Turbulent-Boundary-Layer Interaction , 2009 .

[22]  P. Sagaut,et al.  Large-eddy simulation of the shock/boundary layer interaction , 2001 .