Further closure properties of input-driven pushdown automata

Abstract The paper investigates the closure of the language family defined by input-driven pushdown automata (IDPDA) under the following operations: insertion ins ( L , K ) = { x y z | x z ∈ L , y ∈ K } , deletion del ( L , K ) = { x z | x y z ∈ L , y ∈ K } , square root L = { w | w w ∈ L } , the first half 1 2 L = { u | ∃ v : | u | = | v | , u v ∈ L } and cyclic shift . For K and L recognized by nondeterministic IDPDA, with m and with n states, respectively, insertion requires exactly m n + 2 m states, as long as K is well-nested; deletion requires exactly 2n states, for well-nested K; square root requires n 3 − O ( n 2 ) states, for well-nested L; the well-nested subset of the first half is representable with 2 O ( n 2 ) states; the well-nested subset of the cyclic shift requires exactly 2 n 2 states. Without the well-nestedness constraints, non-closure is established in each case.

[1]  R. Alur,et al.  Adding nesting structure to words , 2006, JACM.

[2]  Kai Salomaa,et al.  Nondeterministic State Complexity of Proportional Removals , 2013, Int. J. Found. Comput. Sci..

[3]  Alexander Okhotin,et al.  State complexity of cyclic shift , 2008, RAIRO Theor. Informatics Appl..

[4]  Alexander Okhotin,et al.  Complexity of input-driven pushdown automata , 2014, SIGA.

[5]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[6]  Jan van Leeuwen,et al.  Effective constructions in well-partially- ordered free monoids , 1978, Discret. Math..

[7]  Alexander Okhotin,et al.  State complexity of operations on input-driven pushdown automata , 2017, J. Comput. Syst. Sci..

[8]  Philippe Schnoebelen,et al.  On the state complexity of closures and interiors of regular languages with subwords and superwords , 2014, Theor. Comput. Sci..

[9]  Robert McNaughton,et al.  Regularity-Preserving Relations , 1976, Theor. Comput. Sci..

[10]  Alexander Okhotin,et al.  Descriptional complexity of unambiguous input-driven pushdown automata , 2015, Theor. Comput. Sci..

[11]  L. H. Haines On free monoids partially ordered by embedding , 1969 .

[12]  Pierre Ganty,et al.  Parikhʼs theorem: A simple and direct automaton construction , 2010, Inf. Process. Lett..

[13]  Alexander Okhotin,et al.  On the State Complexity of Scattered Substrings and Superstrings , 2010, Fundam. Informaticae.

[14]  Kai Salomaa,et al.  Operational state complexity of nested word automata , 2008, Theor. Comput. Sci..

[15]  Jean-Camille Birget,et al.  Intersection and Union of Regular Languages and State Complexity , 1992, Inf. Process. Lett..

[16]  Martin Kutrib,et al.  More on the Size of Higman-Haines Sets: Effective Constructions , 2007, MCU.

[17]  Alexander Okhotin,et al.  Input-driven languages are linear conjunctive , 2016, Theor. Comput. Sci..

[18]  Michael Domaratzki,et al.  State Complexity of Proportional Removals , 2002, J. Autom. Lang. Comb..

[19]  Yo-Sub Han,et al.  Nondeterministic state complexity of nested word automata , 2009, Theor. Comput. Sci..

[20]  Yo-Sub Han,et al.  State complexity of deletion and bipolar deletion , 2016, Acta Informatica.

[21]  Yo-Sub Han,et al.  State Complexity of Insertion , 2016, Int. J. Found. Comput. Sci..