Correction: Revisiting thin silicon for photovoltaics: a technoeconomic perspective

Correction for ‘Revisiting thin silicon for photovoltaics: a technoeconomic perspective’ by Zhe Liu et al., Energy Environ. Sci., 2020, 13, 12–23, DOI: 10.1039/C9EE02452B.

[1]  Hao Wang,et al.  Roadmap for cost-effective, commercially-viable perovskite silicon tandems for the current and future PV market , 2019, Sustainable Energy & Fuels.

[2]  Samuel J. Raymond,et al.  Detection of sub-500-μm cracks in multicrystalline silicon wafer using edge-illuminated dark-field imaging to enable thin solar cell manufacturing , 2019, Solar Energy Materials and Solar Cells.

[3]  T. Buonassisi,et al.  Meeting global cooling demand with photovoltaics during the 21st century , 2019, Energy & Environmental Science.

[4]  Michael Woodhouse,et al.  Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map , 2019 .

[5]  Martin A. Green,et al.  Solar cell efficiency tables (Version 53) , 2018, Progress in Photovoltaics: Research and Applications.

[6]  R. Brendel,et al.  Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells , 2018, Solar Energy Materials and Solar Cells.

[7]  E. Sachs,et al.  Design of a Submillimeter Crack-Detection Tool for Si Photovoltaic Wafers Using Vicinal Illumination and Dark-Field Scattering , 2018, IEEE Journal of Photovoltaics.

[8]  P. Altermatt,et al.  From Laboratory to Production: Learning Models of Efficiency and Manufacturing Cost of Industrial Crystalline Silicon and Thin-Film Photovoltaic Technologies , 2018, IEEE Journal of Photovoltaics.

[9]  C. Ballif,et al.  A passivating contact for silicon solar cells formed during a single firing thermal annealing , 2018, Nature Energy.

[10]  S. Glunz,et al.  Tunnel oxide passivating electron contacts as full‐area rear emitter of high‐efficiency p‐type silicon solar cells , 2018 .

[11]  Kenji Yamamoto,et al.  High-efficiency heterojunction crystalline Si solar cells , 2018, Japanese Journal of Applied Physics.

[12]  Paul A. Basore,et al.  Comparing supply and demand models for future photovoltaic power generation in the USA , 2018 .

[13]  A. Slaoui,et al.  Silicon foil solar cells on low cost supports , 2018 .

[14]  W. Kessels,et al.  Passivating Contacts for Crystalline Silicon Solar Cells: From Concepts and Materials to Prospects , 2018, IEEE Journal of Photovoltaics.

[15]  Steve Peterson,et al.  System Dynamics of Polysilicon for Solar Photovoltaics: A Framework for Investigating the Energy Security of Renewable Energy Supply Chains , 2018 .

[16]  R. Brendel,et al.  Perimeter Recombination in 25%-Efficient IBC Solar Cells With Passivating POLO Contacts for Both Polarities , 2018, IEEE Journal of Photovoltaics.

[17]  K. Yoshikawa,et al.  Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology , 2017 .

[18]  S. Glunz,et al.  n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation , 2017 .

[19]  Yan Wang,et al.  Enhancing optical performance of bifacial PV modules , 2017 .

[20]  Dong Liu,et al.  Development of a distributed Bernoulli gripper for ultra-thin wafer handling , 2017, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[21]  C. Honsberg,et al.  Analysis of the recombination mechanisms of a silicon solar cell with low bandgap-voltage offset , 2017 .

[22]  R. Margolis,et al.  Terawatt-scale photovoltaics: Trajectories and challenges , 2017, Science.

[23]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[24]  M. Hong,et al.  Periodic Upright Nanopyramids for Light Management Applications in Ultrathin Crystalline Silicon Solar Cells , 2017, IEEE Journal of Photovoltaics.

[25]  Frank Feldmann,et al.  The application of poly-Si/SiOx contacts as passivated top/rear contacts in Si solar cells , 2017 .

[26]  S. Glunz,et al.  Comprehensive simulation study of industrially relevant silicon solar cell architectures for an optimal material parameter choice , 2016 .

[27]  S. Bowden,et al.  Flexible Modules Using <70 μm Thick Silicon Solar Cells , 2016 .

[28]  Robert Margolis,et al.  U.S. Solar Photovoltaic System Cost Benchmark: Q1 2018 , 2016 .

[29]  T. Buonassisi,et al.  Thin absorbers for defect-tolerant solar cell design , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[30]  C. Battaglia,et al.  High-efficiency crystalline silicon solar cells: status and perspectives , 2016 .

[31]  Parthiv Kurup,et al.  On the Path to SunShot. Emerging Opportunities and Challenges in U.S. Solar Manufacturing , 2016 .

[32]  Gregory Wilson,et al.  Economically sustainable scaling of photovoltaics to meet climate targets , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[33]  Zhe Liu,et al.  Luminescence imaging analysis of light harvesting from inactive areas in crystalline silicon PV modules , 2016 .

[34]  G. Janssen,et al.  Light Trapping Film for Bifacial Applications , 2015 .

[35]  S. Glunz,et al.  The Irresistible Charm of a Simple Current Flow Pattern – 25% with a Solar Cell Featuring a Full-Area Back Contact , 2015 .

[36]  Halvard Haug,et al.  PC1Dmod 6.1 - State-of-the-art models in a well-known interface for improved simulation of Si solar cells , 2015 .

[37]  M. Zeman,et al.  Nano‐cones on micro‐pyramids: modulated surface textures for maximal spectral response and high‐efficiency solar cells , 2015 .

[38]  Michael Woodhouse,et al.  The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation , 2015 .

[39]  Hele Savin,et al.  Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. , 2015, Nature nanotechnology.

[40]  G. Hahn,et al.  >20% efficient 80 µm thin industrial-type large-area solar cells from 100 µm Sawn c-Si Wafers , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[41]  L. Andreani,et al.  Towards the efficiency limits of silicon solar cells: how thin is too thin? , 2015, 1505.03985.

[42]  A. Aberle,et al.  A Systematic Loss Analysis Method for Rear-Passivated Silicon Solar Cells , 2015, IEEE Journal of Photovoltaics.

[43]  Christophe Ballif,et al.  Manufacturing 100‐µm‐thick silicon solar cells with efficiencies greater than 20% in a pilot production line , 2015 .

[44]  Paul A. Basore,et al.  Understanding Manufacturing Cost Influence on Future Trends in Silicon Photovoltaics , 2014, IEEE Journal of Photovoltaics.

[45]  R. Opila,et al.  Development of a 16.8% Efficient 18-μm Silicon Solar Cell on Steel , 2014, IEEE Journal of Photovoltaics.

[46]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[47]  Jean-Pascal van Ypersele de Strihou Climate Change 2014 - Synthesis Report , 2015 .

[48]  J. Minx,et al.  Climate Change 2014 : Synthesis Report , 2014 .

[49]  D. M. Powell,et al.  Modeling the Cost and Minimum Sustainable Price of Crystalline Silicon Photovoltaic Manufacturing in the United States , 2013, IEEE Journal of Photovoltaics.

[50]  Benedikt Bläsi,et al.  Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms , 2012 .

[51]  M. Woodhouse,et al.  The value proposition for high lifetime (p-type) and thin silicon materials in solar PV applications , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[52]  Tonio Buonassisi,et al.  Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs , 2012 .

[53]  D. Biro,et al.  Crystalline Silicon Solar Cells , 2012 .

[54]  Shreyes N. Melkote,et al.  Analysis of stresses and breakage of crystalline silicon wafers during handling and transport , 2009 .

[55]  Daniel Kray,et al.  Analysis of ultrathin high‐efficiency silicon solar cells , 2009, Renewable Energy.

[56]  Wmm Erwin Kessels,et al.  Silicon surface passivation by atomic layer deposited Al2O3 , 2008 .

[57]  M. Cichon,et al.  Energy and Climate Change , 1997, Energy Exploration &amp; Exploitation.

[58]  Richard M. Swanson,et al.  A vision for crystalline silicon photovoltaics , 2006 .

[59]  C. Tool,et al.  Influence of wafer thickness on the performance of multicrystalline Si solar cells: an experimental study , 2002 .

[60]  Martin A. Green,et al.  21.5% Efficient thin silicon solar cell , 1996 .

[61]  Yichun Wang,et al.  Supply of low-cost and high-efficiency multi-GW mono wafers , 2022 .