In search of the sky compass in the insect brain

Like many vertebrate species, insects rely on a sun compass for spatial orientation and long- range navigation. In addition to the sun, however, insects can also use the polarization pattern of the sky as a reference for estimating navigational directions. Recent analysis of polarization vision pathways in the brain of orthopteroid insects sheds some light onto brain areas that might act as internal navigation centers. Here I review the significance, peripheral mechanisms, and central processing stages for polarization vision in insects with special reference to the locust Schistocerca gregaria. As in other insect species, polarization vision in locusts relies on specialized photoreceptor cells in a small dorsal rim area of the compound eye. Stages in the brain involved in polarized light signaling include specific areas in the lamina, medulla and lobula of the optic lobe and, in the midbrain, the anterior optic tubercle, the lateral accessory lobe, and the central complex. Integration of polarized-light signals with information on solar position appears to start in the optic lobe. In the central complex, polarization-opponent interneurons form a network of interconnected neurons. The organization of the central complex, its connections to thoracic motor centers, and its involvement in the spatial control of locomotion strongly suggest that it serves as a spatial organizer within the insect brain, including the functions of compass orientation and path integration. Time compensation in compass orientation is possibly achieved through a neural pathway from the internal circadian clock in the accessory medulla to the protocerebral bridge of the central complex.

[1]  J. Kennedy,et al.  The migration of the Desert Locust (Schistocerca gregaria Forsk.) I. The behaviour of swarms. II. A theory of long-range migrations , 1951, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[2]  M. Lindauer Time-compensated sun orientation in bees. , 1960, Cold Spring Harbor symposia on quantitative biology.

[3]  G. Varley,et al.  Grasshoppers and Locusts , 1967 .

[4]  K. Frisch The dance language and orientation of bees , 1967 .

[5]  N. Strausfeld,et al.  The optic lobes of Lepidoptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  R. Wehner,et al.  Restrictions on rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor , 1977, The Journal of general physiology.

[7]  T. J. Walker,et al.  The Evolutionary Ecology of Animal Migration , 1978 .

[8]  Nicholas J. Strausfeld,et al.  Neuroarchitectures Serving Compound Eyes of Crustacea and Insects , 1981 .

[9]  R. Wehner Astronavigation in insects , 1984 .

[10]  G. Booth,et al.  General morphology of the brain of the blind cave beetle, Neaphaenops tellkampfii Erichson (Coleoptera : Carabidae) , 1984 .

[11]  Michael Gewecke,et al.  Flight orientation of swarming Locusta migratoria , 1984 .

[12]  Don R. Reynolds,et al.  Orientation at Night by High-Flying Insects , 1986 .

[13]  Rüdiger Wehner,et al.  The Bee’s E-Vector Compass , 1987 .

[14]  Thomas Labhart,et al.  Polarization-opponent interneurons in the insect visual system , 1988, Nature.

[15]  P. Colgan,et al.  Animal Homing , 1992, Chapman & Hall Animal Behaviour Series.

[16]  G. D. Bernard,et al.  Photoreceptor twist: a solution to the false-color problem. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[17]  W. Wiltschko,et al.  Navigation in Birds and Other Animals , 1993, Journal of Navigation.

[18]  R. Strauss,et al.  A higher control center of locomotor behavior in the Drosophila brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Postembryonic development of γ‐aminobutyric acid‐like Immunoreactivity in the brain of the sphinx moth Manduca sexta , 1994 .

[20]  R. Wehner,et al.  The polarization-vision project: championing organismic biology , 1994 .

[21]  U. Homberg Distribution of Neurotransmitters in the Insect Brain , 1994 .

[22]  U. Homberg,et al.  Immunocytochemical mapping of serotonin and neuropeptides in the accessory medulla of the locust, Schistocerca gregaria , 1995, The Journal of comparative neurology.

[23]  U. Homberg,et al.  Distribution of Dip‐allatostatin I‐like immunoreactivity in the brain of the locust Schistocerca gregaria with detailed analysis of immunostaining in the central complex , 1996, The Journal of comparative neurology.

[24]  Labhart,et al.  How polarization-sensitive interneurones of crickets perform at low degrees of polarization , 1996, The Journal of experimental biology.

[25]  R. Wehner,et al.  Visual navigation in insects: coupling of egocentric and geocentric information , 1996, The Journal of experimental biology.

[26]  Esch,et al.  Distance estimation by foraging honeybees , 1996, The Journal of experimental biology.

[27]  Uwe Homberg,et al.  Movement‐sensitive, polarization‐sensitive, and light‐sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria , 1997, The Journal of comparative neurology.

[28]  Uwe Homberg,et al.  Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria) , 1997, Cell and Tissue Research.

[29]  R. Wehner The ant’s celestial compass system: spectral and polarization channels , 1997 .

[30]  C. Helfrich-Förster,et al.  Organization of the circadian system in insects. , 1998, Chronobiology international.

[31]  U. Homberg,et al.  Immunocytochemical demonstration of locustatachykinin‐related peptides in the central complex of the locust brain , 1998 .

[32]  R. Kanzaki,et al.  Coordination of wing motion and walking suggests common control of zigzag motor program in a male silkworm moth , 1998, Journal of Comparative Physiology A.

[33]  R. Kanzaki,et al.  Coordination of flipflopping neural signals and head turning during pheromone-mediated walking in a male silkworm moth Bombyx mori , 1998, Journal of Comparative Physiology A.

[34]  J. Taube Head direction cells and the neurophysiological basis for a sense of direction , 1998, Progress in Neurobiology.

[35]  R. Kanzaki,et al.  Physiological and morphological characterization of olfactory descending interneurons of the male silkworm moth, Bombyx mori , 1999, Journal of Comparative Physiology A.

[36]  M. Giurfa,et al.  Vectors, routes and maps: new discoveries about navigation in insects , 1999, Trends in Neurosciences.

[37]  T. Labhart,et al.  Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye , 1999, Microscopy research and technique.

[38]  N. Strausfeld A brain region in insects that supervises walking. , 1999, Progress in brain research.

[39]  T. Labhart Polarization-Sensitive Interneurons in the Optic Lobe of the Desert Ant Cataglyphis bicolor , 2000, Naturwissenschaften.

[40]  M V Srinivasan,et al.  Honeybee navigation: nature and calibration of the "odometer". , 2000, Science.

[41]  Thomas S. Collett,et al.  How do insects use path integration for their navigation? , 2000, Biological Cybernetics.

[42]  T. Labhart,et al.  Photoreceptor visual fields, ommatidial array, and receptor axon projections in the polarisation-sensitive dorsal rim area of the cricket compound eye , 2000, Journal of Comparative Physiology A.

[43]  I. Meinertzhagen,et al.  Synaptic organization in the fly's optic lamina: few cells, many synapses and divergent microcircuits. , 2001, Progress in brain research.

[44]  U. Homberg,et al.  Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea maderae , 2001, The Journal of comparative neurology.

[45]  R. Wehner Polarization vision--a uniform sensory capacity? , 2001, The Journal of experimental biology.

[46]  H. T. Blair,et al.  The anatomical and computational basis of the rat head-direction cell signal , 2001, Trends in Neurosciences.

[47]  T Labhart,et al.  Spatial integration in polarization-sensitive interneurones of crickets: a survey of evidence, mechanisms and benefits. , 2001, The Journal of experimental biology.

[48]  Thomas S. Collett,et al.  Memory use in insect visual navigation , 2002, Nature Reviews Neuroscience.

[49]  E. Spelke,et al.  Human Spatial Representation: Insights from Animals , 2002 .

[50]  R. Strauss The central complex and the genetic dissection of locomotor behaviour , 2002, Current Opinion in Neurobiology.

[51]  B. Ronacher,et al.  Distance estimation in the third dimension in desert ants , 2002, Journal of Comparative Physiology A.

[52]  Uwe Homberg,et al.  Neurons of the Central Complex of the Locust Schistocerca gregaria are Sensitive to Polarized Light , 2002, The Journal of Neuroscience.

[53]  Verner P Bingman,et al.  Maps in birds: representational mechanisms and neural bases , 2002, Current Opinion in Neurobiology.

[54]  Uwe Homberg,et al.  Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. , 2002, Arthropod structure & development.

[55]  T. Labhart,et al.  Neural mechanisms in insect navigation: polarization compass and odometer , 2002, Current Opinion in Neurobiology.

[56]  B. Frost,et al.  Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Uwe Homberg,et al.  Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria , 2003, The Journal of comparative neurology.

[58]  U. Homberg,et al.  Behavioral analysis of polarization vision in tethered flying locusts , 2003, Journal of Comparative Physiology A.

[59]  R. Wehner Desert ant navigation: how miniature brains solve complex tasks , 2003, Journal of Comparative Physiology A.

[60]  Uwe Homberg,et al.  Neural Organization of the Circadian System of the Cockroach Leucophaea maderae , 2003, Chronobiology international.

[61]  J R Riley,et al.  The automatic pilot of honeybees , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[62]  Dimitrios Lambrinos Navigation in desert ants: the robotic solution , 2003, Robotica.

[63]  U. Homberg,et al.  Flight-correlated activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria , 1994, Journal of Comparative Physiology A.

[64]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[65]  M. Lindauer,et al.  Dauertänze im Bienenstock und ihre Beziehung zur Sonnenbahn , 2004, Naturwissenschaften.

[66]  Thomas Labhart,et al.  Photoreceptor design and optical properties affecting polarization sensitivity in ants and crickets , 1987, Journal of Comparative Physiology A.

[67]  Helmut Schwegler,et al.  Path integration — a network model , 1995, Biological Cybernetics.

[68]  U. Homberg,et al.  Comparative anatomy of pigment-dispersing hormone-immunoreactive neurons in the brain of orthopteroid insects , 1991, Cell and Tissue Research.

[69]  N. Tinbergen,et al.  Über die Orientierung des Bienenwolfes (Philanthus triangulum Fabr.) , 1938, Zeitschrift für vergleichende Physiologie.

[70]  Georg Hartmann,et al.  The ant's path integration system: a neural architecture , 1995, Biological Cybernetics.

[71]  R. Menzel,et al.  Spectral and polarized light sensitivity of photoreceptors in the compound eye of the cricket (Gryllus bimaculatus) , 1989, Journal of Comparative Physiology A.

[72]  N. Tinbergen,et al.  Über die Orientierung des Bienenwolfes (Philanthus triangulum Fabr.) , 2004, Zeitschrift für vergleichende Physiologie.

[73]  J. Israelachvili,et al.  Absorption characteristics of oriented photopigments in microvilli , 2004, Biological Cybernetics.

[74]  D. Varjú,et al.  Polarized Light in Animal Vision: Polarization Patterns in Nature , 2004 .