A representation-valued relative Riemann-Hurwitz theorem and the Hurwitz-Hodge bundle
暂无分享,去创建一个
[1] Tyler Jarvis,et al. Logarithmic trace and orbifold products , 2009, 0904.4648.
[2] A. Chiodo. Towards an enumerative geometry of the moduli space of twisted curves and rth roots , 2006, Compositio Mathematica.
[3] Jian Zhou. On computations of Hurwitz-Hodge integrals , 2007, 0710.1679.
[4] V. Bouchard,et al. On the mathematics and physics of high genus invariants of [C^3/Z_3] , 2007, 0709.3805.
[5] Tyler Jarvis,et al. Stringy K-theory and the Chern character , 2005, math/0502280.
[6] Johan P. Hansen,et al. INTERSECTION THEORY , 2011 .
[7] M. Aganagic,et al. Topological Strings and (Almost) Modular Forms , 2006, hep-th/0607100.
[8] D. Abramovich,et al. Gromov-Witten theory of Deligne-Mumford stacks , 2006, math/0603151.
[9] Hsian-hua Tseng,et al. Orbifold quantum Riemann–Roch, Lefschetz and Serre , 2005, math/0506111.
[10] D. Abramovich,et al. On The Global Quotient Structure of The Space of Twisted Stable Maps to a Quotient Stack , 2005, math/0502253.
[11] Tyler Jarvis,et al. Pointed admissible G-covers and G-equivariant cohomological field theories , 2003, Compositio Mathematica.
[12] Y. Ruan,et al. A New Cohomology Theory of Orbifold , 2000, math/0004129.
[13] A. Kresch,et al. On Coverings of Deligne–Mumford Stacks and Surjectivity of the Brauer Map , 2003, math/0301249.
[14] Tyler Jarvis,et al. ORBIFOLD QUANTUM COHOMOLOGY OF THE CLASSIFYING SPACE OF A FINITE GROUP , 2001, math/0112037.
[15] D. Abramovich,et al. Algebraic orbifold quantum products , 2001, math/0112004.
[16] A. Corti,et al. Twisted Bundles and Admissible Covers , 2001, math/0106211.
[17] B. Fantechi,et al. Orbifold cohomology for global quotients , 2001, math/0104207.
[18] Y. Ruan,et al. Orbifold Gromov-Witten Theory , 2001, math/0103156.
[19] Tyler Jarvis,et al. Moduli Spaces of Higher Spin Curves and Integrable Hierarchies , 1999, Compositio Mathematica.
[20] Bertrand Toën. Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford , 1999 .
[21] W. Graham,et al. Riemann-Roch for equivariant Chow groups , 1999, math/9905081.
[22] D. Edidin,et al. Brauer groups and quotient stacks , 1999, math/9905049.
[23] R. Pandharipande,et al. Hodge integrals and Gromov-Witten theory , 1998, math/9810173.
[24] M. Cornalba,et al. Calculating cohomology groups of moduli spaces of curves via algebraic geometry , 1998, math/9803001.
[25] M. Cornalba,et al. Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves , 1994, alg-geom/9406008.
[26] Y. Takeda. Lefschetz-Riemann-Roch theorem for smooth algebraic schemes , 1992 .
[27] Joe Harris,et al. Representation Theory: A First Course , 1991 .
[28] Edward Witten,et al. Two-dimensional gravity and intersection theory on moduli space , 1990 .
[29] E. Kani. The Galois-module structure of the space of holomorphic differentials of a curve. , 1986 .
[30] W. Fulton,et al. Riemann-Roch Algebra , 1985 .
[31] David Mumford,et al. Towards an Enumerative Geometry of the Moduli Space of Curves , 1983 .
[32] W. Fulton,et al. Lefschetz-riemann-roch for singular varieties , 1979 .
[33] George Quart. Localization theorem inK-theory for singular varieties , 1979 .
[34] David Mumford,et al. Stability of projective varieties , 1977 .
[35] Graeme Segal,et al. Equivariant K-theory , 1968 .