A representation-valued relative Riemann-Hurwitz theorem and the Hurwitz-Hodge bundle

We provide a formula describing the G-module structure of the Hurwitz-Hodge bundle for admissible G-covers in terms of the Hodge bundle of the base curve, and more generally, for describing the G-module structure of the push-forward to the base of any sheaf on a family of admissible G-covers. This formula can be interpreted as a representation-ring-valued relative Riemann-Hurwitz formula for families of admissible G-covers.

[1]  Tyler Jarvis,et al.  Logarithmic trace and orbifold products , 2009, 0904.4648.

[2]  A. Chiodo Towards an enumerative geometry of the moduli space of twisted curves and rth roots , 2006, Compositio Mathematica.

[3]  Jian Zhou On computations of Hurwitz-Hodge integrals , 2007, 0710.1679.

[4]  V. Bouchard,et al.  On the mathematics and physics of high genus invariants of [C^3/Z_3] , 2007, 0709.3805.

[5]  Tyler Jarvis,et al.  Stringy K-theory and the Chern character , 2005, math/0502280.

[6]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[7]  M. Aganagic,et al.  Topological Strings and (Almost) Modular Forms , 2006, hep-th/0607100.

[8]  D. Abramovich,et al.  Gromov-Witten theory of Deligne-Mumford stacks , 2006, math/0603151.

[9]  Hsian-hua Tseng,et al.  Orbifold quantum Riemann–Roch, Lefschetz and Serre , 2005, math/0506111.

[10]  D. Abramovich,et al.  On The Global Quotient Structure of The Space of Twisted Stable Maps to a Quotient Stack , 2005, math/0502253.

[11]  Tyler Jarvis,et al.  Pointed admissible G-covers and G-equivariant cohomological field theories , 2003, Compositio Mathematica.

[12]  Y. Ruan,et al.  A New Cohomology Theory of Orbifold , 2000, math/0004129.

[13]  A. Kresch,et al.  On Coverings of Deligne–Mumford Stacks and Surjectivity of the Brauer Map , 2003, math/0301249.

[14]  Tyler Jarvis,et al.  ORBIFOLD QUANTUM COHOMOLOGY OF THE CLASSIFYING SPACE OF A FINITE GROUP , 2001, math/0112037.

[15]  D. Abramovich,et al.  Algebraic orbifold quantum products , 2001, math/0112004.

[16]  A. Corti,et al.  Twisted Bundles and Admissible Covers , 2001, math/0106211.

[17]  B. Fantechi,et al.  Orbifold cohomology for global quotients , 2001, math/0104207.

[18]  Y. Ruan,et al.  Orbifold Gromov-Witten Theory , 2001, math/0103156.

[19]  Tyler Jarvis,et al.  Moduli Spaces of Higher Spin Curves and Integrable Hierarchies , 1999, Compositio Mathematica.

[20]  Bertrand Toën Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford , 1999 .

[21]  W. Graham,et al.  Riemann-Roch for equivariant Chow groups , 1999, math/9905081.

[22]  D. Edidin,et al.  Brauer groups and quotient stacks , 1999, math/9905049.

[23]  R. Pandharipande,et al.  Hodge integrals and Gromov-Witten theory , 1998, math/9810173.

[24]  M. Cornalba,et al.  Calculating cohomology groups of moduli spaces of curves via algebraic geometry , 1998, math/9803001.

[25]  M. Cornalba,et al.  Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves , 1994, alg-geom/9406008.

[26]  Y. Takeda Lefschetz-Riemann-Roch theorem for smooth algebraic schemes , 1992 .

[27]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[28]  Edward Witten,et al.  Two-dimensional gravity and intersection theory on moduli space , 1990 .

[29]  E. Kani The Galois-module structure of the space of holomorphic differentials of a curve. , 1986 .

[30]  W. Fulton,et al.  Riemann-Roch Algebra , 1985 .

[31]  David Mumford,et al.  Towards an Enumerative Geometry of the Moduli Space of Curves , 1983 .

[32]  W. Fulton,et al.  Lefschetz-riemann-roch for singular varieties , 1979 .

[33]  George Quart Localization theorem inK-theory for singular varieties , 1979 .

[34]  David Mumford,et al.  Stability of projective varieties , 1977 .

[35]  Graeme Segal,et al.  Equivariant K-theory , 1968 .