On multivariate polynomials in Bernstein-Bézier form and tensor algebra

The Bernstein-Bezier representation of polynomials is a very useful tool in computer aided geometric design. In this paper we make use of (multilinear) tensors to describe and manipulate multivariate polynomials in their Bernstein-Bezier form. As an application we consider Hermite interpolation with polynomials and splines.

[1]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[2]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[3]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[4]  Hans-Peter Seidel,et al.  An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.

[5]  Paul Sablonnière,et al.  Cr-finite elements of Powell-Sabin type on the three direction mesh , 1996, Adv. Comput. Math..

[6]  Larry L. Schumaker,et al.  Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..

[7]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[8]  Ming-Jun Lai,et al.  A characterization theorem of multivariate splines in blossoming form , 1991, Comput. Aided Geom. Des..

[9]  C. D. Boor,et al.  B-Form Basics. , 1986 .

[10]  Paul Sablonnière,et al.  Composite finite elements of class Ck , 1985 .

[11]  Rida T. Farouki,et al.  On the optimal stability of the Bernstein basis , 1996, Math. Comput..

[12]  Lyle Ramshaw,et al.  Blossoms are polar forms , 1989, Comput. Aided Geom. Des..

[13]  L. L. Schumaker,et al.  Efficient evaluation of multivariate polynomials , 1986, Comput. Aided Geom. Des..

[14]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[15]  Tom Lyche,et al.  Optimally Stable Multivariate Bases , 2004, Adv. Comput. Math..

[16]  Hendrik Speleers Interpolation with quintic Powell-Sabin splines , 2012 .

[17]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[18]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[19]  Gerald Farin,et al.  Geometric modeling : algorithms and new trends , 1987 .

[20]  Juan Manuel Peña,et al.  Evaluation algorithms for multivariate polynomials in Bernstein-Bézier form , 2006, J. Approx. Theory.

[21]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[22]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..

[23]  Pierre Comon,et al.  Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..

[24]  Victor Y. Pan,et al.  How to Multiply Matrices Faster , 1984, Lecture Notes in Computer Science.

[25]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..