Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals

We investigated terahertz (THz) magneto-optical properties of a ferrofluid and a ferrofluid-filled photonic crystal (FFPC) by using the THz time-domain spectroscopy. A magnetoplasmon resonance splitting and an induced THz transparency phenomenon were demonstrated in the FFPC. The further investigation reveals that the induced transparency originates from the interference between magnetoplasmon modes in the hybrid magneto-optical system of FFPC, and the THz modulation with a 40% intensity modulation depth can be realized in this induced transparency frequency band. This device structure and its tunabilty scheme will have great potential applications in THz filtering, modulation and sensing.

[1]  H. V. Thakur,et al.  Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection , 2011 .

[2]  R. Masut,et al.  Plasmonic enhancement of the magneto-optical response of MnP nanoclusters embedded in GaP epilayers , 2012 .

[3]  Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics. , 2012, Optics express.

[4]  D. Grischkowsky,et al.  Terahertz demonstrations of effectively two-dimensional photonic bandgap structures. , 2006, Optics letters.

[5]  Zhan Guo,et al.  Magnetic photonic crystals for terahertz tunable filter and multifunctional polarization controller , 2011 .

[6]  Achanta Venu Gopal,et al.  Enhanced magneto-optical effects in magnetoplasmonic crystals. , 2011, Nature nanotechnology.

[7]  Xianfeng Chen,et al.  Magnetic-field-induced birefringence and particle agglomeration in magnetic fluids , 2006 .

[8]  S. R. Andrews,et al.  Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces , 2008 .

[9]  Hao Zhang,et al.  Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid , 2011 .

[10]  R. Morandotti,et al.  A magnetic non-reciprocal isolator for broadband terahertz operation , 2013, Nature Communications.

[11]  R. Morandotti,et al.  Terahertz Faraday rotation in a magnetic liquid: High magneto-optical figure of merit and broadba , 2012 .

[12]  L. Molenkamp,et al.  Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range. , 2011, Physical review letters.

[13]  Shengjiang Chang,et al.  Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array , 2013 .

[14]  Wenjuan Zhu,et al.  Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. , 2012, Nano letters.

[15]  Shieh-Yueh Yang,et al.  Origin and applications of magnetically tunable refractive index of magnetic fluid films , 2004 .

[16]  Daniel M. Mittleman,et al.  Dependence of guided resonances on the structural parameters of terahertz photonic crystal slabs , 2008 .

[17]  I Gaponenko,et al.  Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene. , 2012, Nano letters.

[18]  Tobias Steinle,et al.  Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation , 2013, Nature Communications.

[19]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[20]  Keqian Zhang,et al.  Electromagnetic Theory for Microwaves and Optoelectronics , 2007 .

[21]  H. Aoki,et al.  Quantum Faraday and Kerr rotations in graphene , 2013, Nature Communications.

[22]  Daniel M. Mittleman,et al.  Interference-induced terahertz transparency in a semiconductor magneto-plasma , 2010 .

[23]  Sai Chen,et al.  Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens. , 2013, Optics express.