Meta-Regression: A Framework for Robust Reactive Optimization

Maintaining optimal performance as the conditions of a system change is a challenging problem. To solve this problem, we present meta-regression, a general methodology for alleviating traditional difficulties in nonlinear regression modelling. Meta-regression allows for reactive optimization, in which system components self-organize to changing conditions in a manner that is robust, or affected minimally by other sources of variability. Meta-regression extends profiling, providing a methodology for model-building when there is incomplete knowledge of the mechanisms and interactions of a nonlinear system.