Tectonic transition from Ediacaran continental arc to early Cambrian rift in the NE Ardakan region, central Iran: Constraints from geochronology and geochemistry of magmatic rocks

[1]  Yunpeng Dong,et al.  Geochronology and geochemistry of Cadomian basement orthogneisses from the Tutak metamorphic Complex, Sanandaj-Sirjan Zone, Iran , 2021 .

[2]  Fatemeh Nouri,et al.  Early Cambrian highly fractionated granite, Central Iran: Evidence for drifting of northern Gondwana and the evolution of the Proto-Tethys Ocean , 2021 .

[3]  Y. Eyal,et al.  The role of mantle and the ancient continental crust in the generation of post-collisional high-K calc-alkaline and alkaline granites, with main reference to the Arabian-Nubian Shield , 2021 .

[4]  D. Peate,et al.  LIP printing: Use of immobile element proxies to characterize Large Igneous Provinces in the geologic record , 2021, Lithos.

[5]  W. Griffin,et al.  Prolonged magmatism and growth of the Iran-Anatolia Cadomian continental arc segment in Northern Gondwana , 2021, Lithos.

[6]  S. Wilde,et al.  Zircon U–Pb–Hf isotopes and whole rock geochemistry of magmatic rocks from the Posht-e-Badam Block: A key to tectonomagmatic evolution of Central Iran , 2020, Gondwana Research.

[7]  H. Azizi,et al.  Geochronology and petrogenesis of the Late Neoproterozoic granitic gneisses of Golpayegan metamorphic complex: a new respect for Cadomian crust in the Sanandaj-Sirjan zone, Iran , 2020, International Geology Review.

[8]  R. Stern,et al.  Cadomian Magmatic Rocks from Zarand (SE Iran) Formed in a Retro-Arc Basin , 2020 .

[9]  J. Baele,et al.  Episodic magmatism during the growth of a Neoproterozoic oceanic arc (Anti-Atlas, Morocco) , 2020 .

[10]  H. Azizi,et al.  Petrogenesis and geodynamic implications of an Ediacaran (550 Ma) granite complex (metagranites), southwestern Saqqez, northwest Iran , 2019, Journal of Geodynamics.

[11]  W. Collins,et al.  Repeated S–I–A-type granite trilogy in the Lachlan Orogen and geochemical contrasts with A-type granites in Nigeria: implications for petrogenesis and tectonic discrimination , 2019, Special Publications.

[12]  Jinghao Fu,et al.  Neoarchean crust-mantle interactions in the Yishui Terrane, south-eastern margin of the North China Craton: Constraints from geochemistry and zircon U-Pb-Hf isotopes of metavolcanic rocks and high-K granitoids , 2019, Gondwana Research.

[13]  Jiangfeng Qin,et al.  Strongly peraluminous fractionated S-type granites in the Baoshan Block, SW China: Implications for two-stage melting of fertile continental materials following the closure of Bangong-Nujiang Tethys , 2018, Lithos.

[14]  W. Xiao,et al.  Zircon U-Pb-Hf isotopes, bulk-rock geochemistry and Sr-Nd-Pb isotopes from late Neoproterozoic basement in the Mahneshan area, NW Iran: Implications for Ediacaran active continental margin along the northern Gondwana and constraints on the late Oligocene crustal anatexis , 2018 .

[15]  Xian‐Hua Li,et al.  Old Continental Crust Underlying Juvenile Oceanic Arc: Evidence From Northern Arabian‐Nubian Shield, Egypt , 2018 .

[16]  J. G. Shellnutt,et al.  The origin of Late Ediacaran post-collisional granites near the Chad Lineament, Saharan Metacraton, South-Central Chad , 2018 .

[17]  Yunpeng Dong,et al.  U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites, Sanandaj-Sirjan Zone of western Iran , 2018 .

[18]  H. Azizi,et al.  A- and I-type metagranites from the North Shahrekord Metamorphic Complex, Iran: Evidence for Early Paleozoic post-collisional magmatism , 2018 .

[19]  W. Griffin,et al.  Crustal Evolution of NW Iran: Cadomian Arcs, Archean Fragments and the Cenozoic Magmatic Flare-Up , 2017 .

[20]  William L. Griffin,et al.  Neoproterozoic magmatic flare-up along the N. margin of Gondwana: the Taknar complex, NE Iran , 2017 .

[21]  S. Piazolo,et al.  Local partial melting of the lower crust triggered by hydration through melt–rock interaction: an example from Fiordland, New Zealand , 2017 .

[22]  D. Wyman,et al.  Eocene adakitic porphyries in the central‐northern Qiangtang Block, central Tibet: Partial melting of thickened lower crust and implications for initial surface uplifting of the plateau , 2017 .

[23]  J. Crowley,et al.  Ultrafast magmatic buildup and diversification to produce continental crust during subduction , 2017, Geology.

[24]  D. Avigad,et al.  Origin of the Eastern Mediterranean: Neotethys rifting along a cryptic Cadomian suture with Afro-Arabia , 2016 .

[25]  R. Oberhänsli,et al.  Carboniferous granites on the northern margin of Gondwana, Anatolide-Tauride Block, Turkey – Evidence for southward subduction of Paleotethys , 2016 .

[26]  Ming Wang,et al.  Dating of detrital zircons from the Dabure clastic rocks: the discovery of Neoproterozoic strata in southern Qiangtang, Tibet , 2016 .

[27]  Z. Garfunkel The relations between Gondwana and the adjacent peripheral Cadomian domain—constrains on the origin, history, and paleogeography of the peripheral domain , 2015 .

[28]  D. Avigad,et al.  Cadomian basement and Paleozoic to Triassic siliciclastics of the Taurides (Karacahisar dome, south-central Turkey): Paleogeographic constraints from U–Pb–Hf in zircons , 2015 .

[29]  F. Lucci,et al.  Tectonic setting and geochronology of the Cadomian (Ediacaran-Cambrian) magmatism in Central Iran, Kuh-e-Sarhangi region (NW Lut Block) , 2015 .

[30]  M. Basei,et al.  Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen , 2014, Nature Communications.

[31]  Changqian Ma,et al.  Genesis of leucogranite by prolonged fractional crystallization: A case study of the Mufushan complex, South China , 2014 .

[32]  F. Aydın Geochronology, geochemistry, and petrogenesis of the Maçka subvolcanic intrusions: implications for the Late Cretaceous magmatic and geodynamic evolution of the eastern part of the Sakarya Zone, northeastern Turkey , 2014 .

[33]  T. Kusky,et al.  Volcanosedimentary Basins in the Arabian-Nubian Shield: Markers of Repeated Exhumation and Denudation in a Neoproterozoic Accretionary Orogen , 2013, Geosciences.

[34]  S. Wilde,et al.  Petrogenesis of the Cretaceous Zhangzhou batholith in southeastern China: Zircon U-Pb age and Sr-Nd-Hf-O isotopic evidence , 2013 .

[35]  B. Chappell,et al.  Peraluminous I-type granites , 2012 .

[36]  D. Bernoulli,et al.  Evidence for a “Cadomian” ophiolite and magmatic-arc complex in SW Bulgaria , 2012 .

[37]  U. Andersson,et al.  1.8 Ga magmatism in southern Finland: strongly enriched mantle and juvenile crustal sources in a post-collisional setting , 2011 .

[38]  H. Azizi,et al.  Isotopic dating of the Khoy metamorphic complex (KMC), northwestern Iran: A significant revision of the formation age and magma source , 2011 .

[39]  K. Koga,et al.  Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes , 2009 .

[40]  A. Robertson,et al.  Cadomian (Ediacaran-Cambrian) arc magmatism in the Bitlis Massif, SE Turkey: Magmatism along the developing northern margin of Gondwana , 2009 .

[41]  S. Eggins,et al.  Constancy of Nb/U in the mantle revisited , 2008 .

[42]  T. Hirata,et al.  U‐Pb Age Determination for Seven Standard Zircons using Inductively Coupled Plasma–Mass Spectrometry Coupled with Frequency Quintupled Nd‐YAG (λ = 213 nm) Laser Ablation System: Comparison with LA‐ICP‐MS Zircon Analyses with a NIST Glass Reference Material , 2008 .

[43]  D. Stockli,et al.  Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics , 2008 .

[44]  J. Walker,et al.  U-Pb zircon geochronology of late Neoproterozoic–Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement , 2008 .

[45]  Bin Chen,et al.  Zircon SHRIMP U–Pb ages and in-situ Hf isotopic analysis for the Mesozoic intrusions in South Taihang, North China craton: Evidence for hybridization between mantle-derived magmas and crustal components , 2008 .

[46]  A. Nadimi Evolution of the Central Iranian basement , 2007 .

[47]  D. Ruban,et al.  Review of Middle East Paleozoic Plate Tectonics , 2007, GeoArabia.

[48]  M. B. Ohoud,et al.  Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites , 2005 .

[49]  I. Franchi,et al.  Further Characterisation of the 91500 Zircon Crystal , 2004 .

[50]  Robert D. Tucker,et al.  The Saghand Region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana Tectonics , 2003 .

[51]  M. Perfit,et al.  Rhenium systematics in submarine MORB and back-arc basin glasses: laser ablation ICP-MS results , 2003 .

[52]  J. Meert A synopsis of events related to the assembly of eastern Gondwana , 2003 .

[53]  W. Griffin,et al.  Igneous zircon: trace element composition as an indicator of source rock type , 2002 .

[54]  J. Keppie,et al.  A Cordilleran model for the evolution of Avalonia , 2002 .

[55]  M. Abdelsalam,et al.  The Saharan metacraton , 2002 .

[56]  Kazuya Takahashi,et al.  JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium , 2000 .

[57]  A. Fallick,et al.  Amphibole-rich clots in calc-alkalic granitoids in the Borborema province, northeastern Brazil , 1998 .

[58]  K. Jochum,et al.  Quaternary volcanic activity of the southern Red Sea: new data and assessment of models on magma sources and Afar plume-lithosphere interaction , 1997 .

[59]  N. Petford,et al.  Na-rich Partial Melts from Newly Underplated Basaltic Crust: the Cordillera Blanca Batholith, Peru , 1996 .

[60]  R. Rudnick,et al.  Nature and composition of the continental crust: A lower crustal perspective , 1995 .

[61]  E. Watson,et al.  Dehydration melting of metabasalt at 8-32 kbar : Implications for continental growth and crust-mantle recycling , 1995 .

[62]  J. Beard,et al.  Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar , 1995 .

[63]  W. McDonough,et al.  The composition of the Earth , 1995 .

[64]  E. Middlemost Naming materials in the magma/igneous rock system , 1994 .

[65]  J. Murphy,et al.  Contrasting basement isotopic signatures and the palinspastic restoration of peripheral orogens: Example from the Neoproterozoic Avalonian-Cadomian belt , 1994 .

[66]  M. Roberts,et al.  Origin of high-potassium, talc-alkaline, I-type granitoids , 1993 .

[67]  G. Lofgren,et al.  Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6. 9 kb , 1991 .

[68]  J. Murphy,et al.  Model for the evolution of the Avalonian-Cadomian belt , 1989 .

[69]  Nobuo Morimoto,et al.  Nomenclature of Pyroxenes , 1988, Mineralogical Magazine.

[70]  J. Whalen,et al.  A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .

[71]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[72]  J. Minster,et al.  Quantitative models of trace element behavior in magmatic processes , 1978 .

[73]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[74]  International Mineralogical Association: Commission on New Minerals and Mineral Names , 1971, Mineralogical Magazine.

[75]  J. Stocklin Structural History and Tectonics of Iran: A Review , 1968 .

[76]  H. Moeinzadeh,et al.  Geochemistry and mineral chemistry of gabbroic rocks from Horjand of Kerman province, Southeast of Iran: Implications for rifting along the northeastern margin of Gondwana , 2020 .

[77]  J. Santos,et al.  Cadomian (Ediacaran-Cambrian) arc magmatism in the ChahJam-Biarjmand metamorphic complex (Iran): magmatism along the northern active margin of Gondwana , 2015 .

[78]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[79]  J. Wijbrans,et al.  Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: Implications for crustal thickening to delamination , 2010 .

[80]  J. Pearce Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust , 2008 .

[81]  B. Yibas,et al.  NEOPROTEROZOIC OPHIOLITES OF THE ARABIAN-NUBIAN SHIELD , 2004 .

[82]  H. Palme,et al.  The Earth's Mantle: Composition of the Silicate Earth: Implications for Accretion and Core Formation , 1998 .

[83]  S. Taylor,et al.  Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey , 1976 .

[84]  G. Tyrrell Eruptive Rocks , 1943, Nature.