Genetic diversity analysis in wheat cultivars using SCoT and ISSR markers, chloroplast DNA barcoding and grain SEM

[1]  T. Burki Food security and nutrition in the world , 2022, The Lancet Diabetes & Endocrinology.

[2]  Wheat Improvement: Food Security in a Changing Climate , 2022 .

[3]  F. Fritschi,et al.  The impact of stress combination on reproductive processes in crops. , 2021, Plant science : an international journal of experimental plant biology.

[4]  A. Börner,et al.  Genetic diversity of a global collection of maize genetic resources in relation to their subspecies assignments, geographic origin, and drought tolerance , 2021, Breeding science.

[5]  A. Etminan,et al.  Molecular diversity analysis in hexaploid wheat (Triticum aestivum L.) and two Aegilops species (Aegilops crassa and Aegilops cylindrica) using CBDP and SCoT markers , 2021, Journal of Genetic Engineering and Biotechnology.

[6]  Arun Kumar Pandey,et al.  Applicability of Start Codon Targeted (SCoT) and Inter Simple Sequence Repeat (ISSR) markers in assessing genetic diversity in Crepidium acuminatum (D. Don) Szlach. , 2021 .

[7]  N. Tahir,et al.  Genome diversity and population structure analysis of Iranian landrace and improved barley (Hordeum vulgare L.) genotypes using arbitrary functional gene-based molecular markers , 2020, Genetic Resources and Crop Evolution.

[8]  F. Fritschi,et al.  Meta-analysis of drought and heat stress combination impact on crop yield and yield components. , 2020, Physiologia plantarum.

[9]  Mohamed M. Hassan,et al.  Applicability of inter-simple sequence repeat (ISSR), start codon targeted (SCoT) markers and ITS2 gene sequencing for genetic diversity assessment in Moringa oleifera Lam , 2020 .

[10]  R. Azizinezhad,et al.  The study of genetic diversity in a minicore collection of durum wheat genotypes using agro-morphological traits and molecular markers , 2020, Cereal Research Communications.

[11]  M. Ibrahim,et al.  Genetic Diversity among Selected Medicago sativa Cultivars Using Inter-Retrotransposon-Amplified Polymorphism, Chloroplast DNA Barcodes and Morpho-Agronomic Trait Analyses , 2020, Plants.

[12]  M. Basahi,et al.  Ex-situ conservation of wheat genetic resources from Saudi Arabia , 2020, Saudi journal of biological sciences.

[13]  A. Kassambara,et al.  Extract and Visualize the Results of Multivariate Data Analyses [R package factoextra version 1.0.7] , 2020 .

[14]  S. Osman,et al.  Genetic Diversity of Five Lathyrus Species using RAPD, ISSR and SCoT Markers , 2020 .

[15]  M. M. Majidi,et al.  Genotype selection for physiological responses of drought tolerance using molecular markers in polycross hybrids of orchardgrass , 2019, Plant Breeding.

[16]  A. T. Bondok Using DNA Barcoding for Fingerprinting of Two Important Forage Crops Varieties (Alfalfa And Egyptian Clover) , 2019, Journal of Agricultural Chemistry and Biotechnology.

[17]  Jianping Han,et al.  DNA Mini-Barcoding: A Derived Barcoding Method for Herbal Molecular Identification , 2019, Front. Plant Sci..

[18]  Randle Aaron M. Villanueva,et al.  ggplot2: Elegant Graphics for Data Analysis (2nd ed.) , 2019, Measurement: Interdisciplinary Research and Perspectives.

[19]  C. Busanello,et al.  Bread wheat: a role model for plant domestication and breeding , 2019, Hereditas.

[20]  P. Golkar,et al.  Analysis of genetic diversity and population structure in Nigella sativa L. using agronomic traits and molecular markers (SRAP and SCoT) , 2019, Industrial Crops and Products.

[21]  S. Khaghani,et al.  Assessment of genetic diversity in Triticum urartu Thumanjan ex Gandilyan accessions using start codon targeted polymorphism (SCoT) and CAAT-box derived polymorphism (CBDP) markers , 2019, Biotechnology & Biotechnological Equipment.

[22]  A. Mirlohi,et al.  Marker-based parental selection to improve performance of orchadgrass polycross populations under water deficit environments , 2018, Euphytica.

[23]  Ana Iglesias,et al.  Climate change and interconnected risks to sustainable development in the Mediterranean , 2018, Nature Climate Change.

[24]  T. Özcan,et al.  INTRASPECIFIC VARIATIONS STUDIED BY ISSR AND IRAP MARKERS IN MASTIC TREE (Pistacia lentiscus L.) FROM TURKEY , 2018, Trakya University Journal of Natural Sciences.

[25]  M. Vahed,et al.  Assessment of genetic diversity and relationships among Triticum urartu and Triticum boeoticum populations from Iran using IRAP and REMAP markers , 2018, Genetic Resources and Crop Evolution.

[26]  R. F. Vieira,et al.  DNA Barcoding for the Identification of Phyllanthus Taxa Used Medicinally in Brazil , 2018, Planta Medica.

[27]  A. Rasheed,et al.  Wheat genetic resources in the post-genomics era: promise and challenges , 2018, Annals of botany.

[28]  K. Abdel-Lateif,et al.  GENETIC DIVERSITY AMONG EGYPTIAN WHEAT CULTIVARS USING SCoT AND ISSR MARKERS , 2018 .

[29]  M. Ibrahim,et al.  Taxonomic and molecular study on some Asian cultivars of Triticum aestivum L. , 2017 .

[30]  Kareem A. Mosa,et al.  Identification of effective DNA barcodes for Triticum plants through chloroplast genome-wide analysis , 2017, Comput. Biol. Chem..

[31]  Ari,et al.  Assessment of genetic diversity in crop plants - an overview , 2017 .

[32]  A. Mehrabi,et al.  Assessment of genetic diversity among Iranian Triticum germplasm using agro-morphological traits and start codon targeted (SCoT) markers , 2017 .

[33]  M. Ibrahim,et al.  SEM and SCoT Markers Unveil New Taxonomic and Genetic Insights about Some Northern African Triticum aestivum L. Cultivars , 2017 .

[34]  W. Kress,et al.  Advances of Community-Level Plant DNA Barcoding in China , 2017, Front. Plant Sci..

[35]  H. Quesneville,et al.  Reconciling the evolutionary origin of bread wheat (Triticum aestivum). , 2017, The New phytologist.

[36]  Z. Moradi,et al.  Applicability of start codon targeted (SCoT) and inter-simple sequence repeat (ISSR) markers for genetic diversity analysis in durum wheat genotypes , 2016 .

[37]  R. Shoaib,et al.  MOLECULAR AND MORPHO-ANATOMICAL CHARACTERIZATION OF SOME EGYPTIAN DURUM WHEAT CULTIVARS / LINES , 2016 .

[38]  P. Martins-Lopes,et al.  Potential of Start Codon Targeted (SCoT) markers for DNA fingerprinting of newly synthesized tritordeums and their respective parents , 2014, Journal of Applied Genetics.

[39]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[40]  A. Tsaftaris,et al.  Barcoding the major Mediterranean leguminous crops by combining universal chloroplast and nuclear DNA sequence targets. , 2012, Genetics and molecular research : GMR.

[41]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[42]  Damon P. Little,et al.  Choosing and Using a Plant DNA Barcode , 2011, PloS one.

[43]  Shiliang Zhou,et al.  New universal matK primers for DNA barcoding angiosperms , 2011 .

[44]  Peter M Hollingsworth,et al.  Selecting barcoding loci for plants: evaluation of seven candidate loci with species‐level sampling in three divergent groups of land plants , 2009, Molecular ecology resources.

[45]  D. Mackill,et al.  Start Codon Targeted (SCoT) Polymorphism: A Simple, Novel DNA Marker Technique for Generating Gene-Targeted Markers in Plants , 2009, Plant Molecular Biology Reporter.

[46]  Barbara R. Holland,et al.  Analysis of Phylogenetics and Evolution with R , 2007 .

[47]  Mehrdad Hajibabaei,et al.  Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring , 2007, BMC Biology.

[48]  M. Branchard,et al.  Nonanchored Inter Simple Sequence Repeat (ISSR) markers: Reproducible and specific tools for genome fingerprinting , 2001, Plant Molecular Biology Reporter.

[49]  A. Sabh,et al.  TAXONOMIC ASSESSMENT OF SOME SPECIES OF POACEAE (GRAMINEAE). , 2006, Journal of Plant Production.

[50]  E. Paradis Analysis of Phylogenetics and Evolution with R , 2006 .

[51]  Hidetoshi Shimodaira,et al.  Pvclust: an R package for assessing the uncertainty in hierarchical clustering , 2006, Bioinform..

[52]  P. Peterson,et al.  Eragrostis (Poaceae: Chloridoideae: Eragrostideae: Eragrostidinae) from northeastern Mexico , 2005 .

[53]  R. Hijmans,et al.  Marker-assisted sampling of the cultivated Andean potato Solanum phureja collection using RAPD markers , 1999, Genetic Resources and Crop Evolution.

[54]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[55]  M. Chase,et al.  DNA data and archidaceae systematics: A new phylogenetic classification , 2003 .

[56]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[57]  S. Shouche,et al.  Shape analysis of grains of Indian wheat varieties , 2001 .

[58]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[59]  M. Chase,et al.  Taxonomic Affinities of Medusagyne oppositifolia (Medusagynaceae) , 1997 .

[60]  James F. Smith Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .

[61]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[62]  Margaret R. Murley Seeds of the Cruciferae of Northeastern North America , 1951 .