Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil

Superparamagnetic iron-oxide nanoparticles can be used in medical applications like vascular or targeted imaging. Magnetic particle imaging (MPI) is a promising tomographic imaging technique that allows visualizing the 3D nanoparticle distribution concentration in a non-invasive manner. The two main strengths of MPI are high temporal resolution and high sensitivity. While the first has been proven in the assessment of dynamic processes like cardiac imaging, it is unknown how far the detection limit of MPI can be lowered. Within this work, we will present a highly sensitive gradiometric receive-coil unit combined with a noise-matching network tailored for the imaging of mice. The setup is capable of detecting 5 ng of iron in-vitro with an acquisition time of 2.14 sec. In terms of iron concentration we are able to detect 156 μg/L marking the lowest value that has been reported for an MPI scanner so far. In-vivo MPI mouse images of a 512 ng bolus and a 21.5 ms acquisition time allow for capturing the flow of an intravenously injected tracer through the heart of a mouse. Since it has been rather difficult to compare detection limits across MPI publications we propose guidelines to improve the comparability of future MPI studies.

[1]  T Knopp,et al.  Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers. , 2016, Medical physics.

[2]  Tobias Knopp,et al.  Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach , 2016, PloS one.

[3]  Thorsten M. Buzug,et al.  Trajectory dependent particle response for anisotropic mono domain particles in magnetic particle imaging , 2016 .

[4]  Kannan M. Krishnan,et al.  Tuning Surface Coatings of Optimized Magnetite Nanoparticle Tracers for In Vivo Magnetic Particle Imaging , 2015, IEEE Transactions on Magnetics.

[5]  B Gleich,et al.  Three-dimensional real-time in vivo magnetic particle imaging , 2009, Physics in medicine and biology.

[6]  Jörn Borgert,et al.  Multi-color magnetic particle imaging for cardiovascular interventions , 2016, Physics in medicine and biology.

[7]  Patrick W. Goodwill,et al.  Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast , 2015, Scientific Reports.

[8]  Bernhard Gleich,et al.  JFET NOISE MODELLING FOR MPI RECEIVERS , 2010 .

[9]  B. Wollenberg,et al.  Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells , 2014, International journal of nanomedicine.

[10]  Bernhard Gleich,et al.  MPI Safety in the View of MRI Safety Standards , 2015, IEEE Transactions on Magnetics.

[11]  Thorsten M. Buzug,et al.  Prediction of the Spatial Resolution of Magnetic Particle Imaging Using the Modulation Transfer Function of the Imaging Process , 2011, IEEE Transactions on Medical Imaging.

[12]  Tobias Knopp,et al.  Sensitivity Enhancement in Magnetic Particle Imaging by Background Subtraction , 2016, IEEE Transactions on Medical Imaging.

[13]  Tobias Knopp,et al.  Influence of the Receive Channel Number on the Spatial Resolution in Magnetic Particle Imaging , 2017 .

[14]  O. Woywode,et al.  Human PNS and SAR study in the frequency range from 24 to 162 kHz , 2013, 2013 International Workshop on Magnetic Particle Imaging (IWMPI).

[15]  Thorsten M. Buzug,et al.  Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation , 2012 .

[16]  S. Conolly,et al.  A custom low-noise preamplifier for Magnetic Particle Imaging , 2015, International Workshop on Magnetic Particle Imaging.

[17]  Justin J. Konkle,et al.  Magnetic Particle Imaging With Tailored Iron Oxide Nanoparticle Tracers , 2015, IEEE Transactions on Medical Imaging.

[18]  S. Tumański Induction coil sensors—a review , 2007 .

[19]  T M Buzug,et al.  [Magnetic particle imaging (MPI)]. , 2012, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[20]  Bernhard Gleich,et al.  Tomographic imaging using the nonlinear response of magnetic particles , 2005, Nature.

[21]  Tobias Knopp,et al.  Magnetic Particle Imaging durch Superparamagnetische Nanopartikel zur Sentinellymphknotendetektion beim Mammakarzinom , 2011 .

[22]  B Gleich,et al.  Weighted iterative reconstruction for magnetic particle imaging , 2010, Physics in medicine and biology.

[23]  T M Buzug,et al.  Two dimensional magnetic particle spectrometry , 2017, Physics in medicine and biology.

[24]  Bernhard Gleich,et al.  Micro-magnetic simulation study on the magnetic particle imaging performance of anisotropic mono-domain particles , 2012, Physics in medicine and biology.

[25]  Bernhard Gleich,et al.  Signal encoding in magnetic particle imaging: properties of the system function , 2009, BMC Medical Imaging.

[26]  Patrick W. Goodwill,et al.  The X-Space Formulation of the Magnetic Particle Imaging Process: 1-D Signal, Resolution, Bandwidth, SNR, SAR, and Magnetostimulation , 2010, IEEE Transactions on Medical Imaging.

[27]  B. Hamm,et al.  CT-Angiografie zur Diagnostik der Lungenarterienembolie – Reduktion der Strahlendosis mittels adaptiver statistischer iterativer Rekonstruktion und erniedrigter Röhrenspannung , 2015 .

[28]  Tobias Knopp,et al.  Combined Preclinical Magnetic Particle Imaging and Magnetic Resonance Imaging: Initial Results in Mice , 2015, Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren.

[29]  H. A. Wheeler Simple Inductance Formulas for Radio Coils , 1928, Proceedings of the Institute of Radio Engineers.

[30]  Matthias Graeser,et al.  Analog receive signal processing for magnetic particle imaging. , 2013, Medical physics.

[31]  Andrew G. Glen,et al.  APPL , 2001 .

[32]  Tobias Knopp,et al.  Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging , 2016, Physics in medicine and biology.

[33]  K. Krishnan,et al.  Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization , 2016 .

[34]  Thorsten M. Buzug,et al.  Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging , 2009 .

[35]  Bernhard Gleich,et al.  Analysis of a 3-D System Function Measured for Magnetic Particle Imaging , 2012, IEEE Transactions on Medical Imaging.

[36]  Thorsten M. Buzug,et al.  Single-sided device for magnetic particle imaging , 2009 .

[37]  Bernhard Gleich,et al.  Quantitative “Hot-Spot” Imaging of Transplanted Stem Cells Using Superparamagnetic Tracers and Magnetic Particle Imaging , 2015, Tomography.

[38]  Matthias Graeser,et al.  Magnetic particle imaging: kinetics of the intravascular signal in vivo , 2013, 2013 International Workshop on Magnetic Particle Imaging (IWMPI).

[39]  J. Weizenecker,et al.  NOISE WITHIN MAGNETIC PARTICLE IMAGING , 2010 .

[40]  Yasushi Takemura,et al.  Variation of Magnetic Particle Imaging Tracer Performance With Amplitude and Frequency of the Applied Magnetic Field , 2015, IEEE Transactions on Magnetics.

[41]  T. Buzug,et al.  Dynamic single-domain particle model for magnetite particles with combined crystalline and shape anisotropy , 2015 .

[42]  Thorsten M. Buzug,et al.  Simulation of the magnetization dynamics of diluted ferrofluids in medical applications , 2013, Biomedizinische Technik. Biomedical engineering.

[43]  Thorsten M Buzug,et al.  Toward cardiovascular interventions guided by magnetic particle imaging: First instrument characterization , 2013, Magnetic resonance in medicine.

[44]  P. Karp,et al.  Unidirectional magnetic gradiometers , 1980 .

[45]  Patrick W. Goodwill,et al.  Magnetostimulation Limits in Magnetic Particle Imaging , 2013, IEEE Transactions on Medical Imaging.

[46]  Emine U Saritas,et al.  Effects of pulse duration on magnetostimulation thresholds. , 2015, Medical physics.

[47]  B Gleich,et al.  Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection , 2013, Physics in medicine and biology.

[48]  K. M. Krishnan,et al.  Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. , 2017, Nanoscale.

[49]  Zhi Wei Tay,et al.  A High-Throughput, Arbitrary-Waveform, MPI Spectrometer and Relaxometer for Comprehensive Magnetic Particle Optimization and Characterization , 2016, Scientific Reports.