New incremental isoconversional method for kinetic analysis of solid thermal decomposition

A simple and precise incremental isoconversional integral method based on Li-Tang (LT) method is proposed for kinetic analysis of solid thermal decomposition, in order to evaluate the activation energy as a function of conversion degree. The new method overcomes the limitation of LT method in which the calculated activation energy is influenced by the lower limit of integration. By applying the new method to kinetic analysis of both the simulated nonisothermal case and experimental case of strontium carbonate thermal decomposition, it is shown that the dependence of activation energy on conversion degree evaluated by the new method is consistent with those obtained by Friedman (FR) method and the modified Vyazovkin method. As the new method is free from approximating the temperature integral and not sensitive to the noise of the kinetic data, it is believed to be more convenient in nonisothermal kinetic analysis of solid decompositions.

[1]  Sergey Vyazovkin,et al.  A unified approach to kinetic processing of nonisothermal data , 1996 .

[2]  B. Boonchom Kinetic and thermodynamic studies of MgHPO4 · 3H2O by non-isothermal decomposition data , 2009 .

[3]  Santanu Das,et al.  Non‐Isothermal Decomposition Kinetics of Alkaline Earth Metal Carbonates , 2007 .

[4]  Alan K. Burnham,et al.  Computational aspects of kinetic analysis: Part A: The ICTAC kinetics project-data, methods and results , 2000 .

[5]  Alan K. Burnham,et al.  Computational aspects of kinetic analysis.: Part D: The ICTAC kinetics project — multi-thermal–history model-fitting methods and their relation to isoconversional methods , 2000 .

[6]  B. Roduit Computational aspects of kinetic analysis.: Part E: The ICTAC Kinetics Project—numerical techniques and kinetics of solid state processes , 2000 .

[7]  T. Kaljuvee,et al.  Heating rate effect on the thermal behavior of ammonium nitrate and its blends with limestone and dolomite , 2009 .

[8]  Junmeng Cai,et al.  Kinetic analysis of wheat straw pyrolysis using isoconversional methods , 2009 .

[9]  T. Tang,et al.  A new method for analysing non-isothermal thermoanalytical data from solid-state reactions , 1999 .

[10]  S. Vyazovkin,et al.  Isothermal and Nonisothermal Reaction Kinetics in Solids: In Search of Ways toward Consensus , 1997 .

[11]  P. Budrugeac,et al.  On the Li and Tang's isoconversional method for kinetic analysis of solid-state reactions from thermoanalytical data , 2001 .

[12]  Naian Liu,et al.  Error of kinetic parameters for one type of integral method for thermogravimetric measurements , 2005 .

[13]  S. Vyazovkin Computational aspects of kinetic analysis. Part C. The ICTAC Kinetics Project — the light at the end of the tunnel? , 2000 .

[14]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .

[15]  Michel Ferriol,et al.  Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves , 2003 .

[16]  P. Budrugeac,et al.  On the nonlinear isoconversional procedures to evaluate the activation energy of nonisothermal reactions in solids , 2003 .

[17]  C. D. Doyle Estimating isothermal life from thermogravimetric data , 1962 .

[18]  A. Ortega,et al.  A simple and precise linear integral method for isoconversional data , 2008 .

[19]  T. Ozawa A New Method of Analyzing Thermogravimetric Data , 1965 .

[20]  Sergey Vyazovkin,et al.  Modification of the integral isoconversional method to account for variation in the activation energy , 2001, Journal of Computational Chemistry.

[21]  Chen Donghua,et al.  An integral method to determine variation in activation energy with extent of conversion , 2005 .

[22]  H. L. Friedman,et al.  Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic , 2007 .

[23]  T. Tang,et al.  Dynamic thermal analysis of solid-state reactions , 1997 .

[24]  S. Vyazovkin Evaluation of activation energy of thermally stimulated solid‐state reactions under arbitrary variation of temperature , 1997 .

[25]  R. T. Yang,et al.  Rational approximations of the integral of the Arrhenius function , 1977 .

[26]  P. Budrugeac Differential Non-Linear Isoconversional Procedure for Evaluating the Activation Energy of Non-Isothermal Reactions , 2002 .

[27]  Tong B. Tang,et al.  Isoconversion method for kinetic analysis of solid-state reactions from dynamic thermoanalytical data , 1999 .

[28]  A. W. Coats,et al.  Kinetic Parameters from Thermogravimetric Data , 1964, Nature.