Biomechanical comparison of anterior lumbar interbody fusion: stand-alone interbody cage versus interbody cage with pedicle screw fixation - a finite element analysis

[1]  M. Groff Introduction: guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. , 2014, Journal of neurosurgery. Spine.

[2]  F. Zhao,et al.  Meta-analysis of instrumented posterior interbody fusion versus instrumented posterolateral fusion in the lumbar spine. , 2011, Journal of neurosurgery. Spine.

[3]  I. Colak,et al.  Posterior lumbar interbody fusion versus posterolateral fusion with instrumentation in the treatment of low-grade isthmic spondylolisthesis: midterm clinical outcomes. , 2011, Journal of neurosurgery. Spine.

[4]  Heoung-Jae Chun,et al.  Analysis of biomechanical changes after removal of instrumentation in lumbar arthrodesis by finite element analysis , 2010, Medical & Biological Engineering & Computing.

[5]  N. Haas,et al.  Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion , 2008, European Spine Journal.

[6]  Kyung-Woo Park,et al.  Comparison of the load-sharing characteristics between pedicle-based dynamic and rigid rod devices , 2007, Biomedical materials.

[7]  Manohar M Panjabi,et al.  Hybrid multidirectional test method to evaluate spinal adjacent-level effects. , 2007, Clinical biomechanics.

[8]  Neil R Crawford,et al.  Biomechanical Assessment of Anterior Lumbar Interbody Fusion With an Anterior Lumbosacral Fixation Screw-Plate: Comparison to Stand-Alone Anterior Lumbar Interbody Fusion and Anterior Lumbar Interbody Fusion With Pedicle Screws in an Unstable Human Cadaver Model , 2006, Spine.

[9]  F. Kandziora,et al.  A New Stand-Alone Anterior Lumbar Interbody Fusion Device: Biomechanical Comparison with Established Fixation Techniques , 2005, Spine.

[10]  B. Walters,et al.  Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 17: bone growth stimulators and lumbar fusion. , 2005, Journal of neurosurgery. Spine.

[11]  Paul Park,et al.  Adjacent Segment Disease after Lumbar or Lumbosacral Fusion: Review of the Literature , 2004, Spine.

[12]  N. Crawford,et al.  Biomechanical Comparison of Anterolateral Plate, Lateral Plate, and Pedicle Screws-Rods for Enhancing Anterolateral Lumbar Interbody Cage Stabilization , 2004, Spine.

[13]  J. O'Brien,et al.  Simultaneous combined anterior and posterior fusion , 1992, European Spine Journal.

[14]  Stephen J. Ferguson,et al.  Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis , 2003, European Spine Journal.

[15]  Anders Nordwall,et al.  Chronic Low Back Pain and Fusion: A Comparison of Three Surgical Techniques: A Prospective Multicenter Randomized Study From the Swedish Lumbar Spine Study Group , 2002, Spine.

[16]  I. Lieberman,et al.  In Vitro Stability of FRA Spacers With Integrated Crossed Screws for Anterior Lumbar Interbody Fusion , 2002, Spine.

[17]  T. Lübbers,et al.  [Anterior lumbar interbody fusion as a treatment for chronic refractory lower back pain in disc degeneration and spondylolisthesis using carbon cages - stand alone]. , 2002, Zentralblatt fur Neurochirurgie.

[18]  L Claes,et al.  Influence of a Follower Load on Intradiscal Pressure and Intersegmental Rotation of the Lumbar Spine , 2001, Spine.

[19]  T. Lund,et al.  Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review , 2000, European Spine Journal.

[20]  L. Nolte,et al.  Load-Sharing Characteristics of Stabilized Lumbar Spine Segments , 2000, Spine.

[21]  A. Patwardhan,et al.  A follower load increases the load-carrying capacity of the lumbar spine in compression. , 1999, Spine.

[22]  E Schneider,et al.  Structure and Function of Vertebral Trabecular Bone , 1997, Spine.

[23]  N. Langrana,et al.  Role of Ligaments and Facets in Lumbar Spinal Stability , 1995, Spine.

[24]  P. Brinckmann,et al.  Interlaminar Shear Stresses and Laminae Separation in a Disc: Finite Element Analysis of the L3‐L4 Motion Segment Subjected to Axial Compressive Loads , 1995, Spine.

[25]  M M Panjabi,et al.  Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint , 1989, Spine.

[26]  A. M. Ahmed,et al.  Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study. , 1984, Spine.

[27]  A. M. Ahmed,et al.  Some static mechanical properties of the lumbar intervertebral joint, intact and injured. , 1982, Journal of biomechanical engineering.

[28]  H. Ranu,et al.  Pressure distribution under an intervertebral disc--an experimental study. , 1979, Journal of biomechanics.

[29]  S. Rolander Motion of the lumbar spine with special reference to the stabilizing effect of posterior fusion. An experimental study on autopsy specimens. , 1966, Acta orthopaedica Scandinavica.

[30]  A. Nachemson,et al.  Lumbar intradiscal pressure. Experimental studies on post-mortem material. , 1960, Acta orthopaedica Scandinavica. Supplementum.

[31]  T. Brown,et al.  Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs; a preliminary report. , 1957, The Journal of bone and joint surgery. American volume.