Quasi‐Variational Inequalities in Topological Linear Locally Convex Hausdorff Spaces

This paper will present some results on quasivariational inequality {C, E, P, Φ} in topological linear locally convex Hausdorff spaces. We shall be concerning with quasivariational inequalities defined on subsets which are convexe closed, or only closed. The compactness of the subset C is replaced by the condensing property of the mapping E. Further, we also obtain some results for quasivariational inequality {C, E, P, Φ}, where the multivalued mapping E maps C into 2X and satisfies a general inward boundary condition.