$C^*$ exponential length of commutators unitaries in AH-algebras
暂无分享,去创建一个
[1] N. Phillips,et al. FACTORIZATION PROBLEMS IN THE INVERTIBLE GROUP OF A HOMOGENEOUS C*-ALGEBRA , 1996 .
[2] N. Phillips. Exponential length and traces , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[3] C. Pasnicu. Shape equivalence, nonstable K-theory and AH algebras , 2000 .
[4] G. Elliott,et al. Injectivity of the Connecting Maps in AH Inductive Limit Systems , 2005, Canadian Mathematical Bulletin.
[5] G. Elliott,et al. On the classification of simple inductive limit C*-algebras, II: The isomorphism theorem , 2007 .
[6] Huaxin Lin. Approximate Unitary Equivalence in Simple C^*-algebras of Tracial Rank One , 2008, 0801.2929.
[7] Huaxin Lin. Exponentials in simple Z-stable C⁎-algebras , 2014 .
[8] K. Thomsen. Homomorphisms between finite direct sums of circle algebras , 1992 .
[9] Mikio Nakahara,et al. Top-down: , 2020, Limits of Supranational Justice.
[10] W. Winter. Nuclear dimension and $\mathcal{Z}$-stability of pure C∗-algebras , 2012 .
[11] G. Elliott,et al. On the classification of C*-algebras of real rank zero, V , 1996, 1811.06758.
[12] J. Ringrose. Exponential length and exponential rank in C*-algebras , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[13] Huaxin Lin. Exponential Rank of C*-Algebras with Real Rank Zero and the Brown-Pedersen Conjectures , 1993 .
[14] G. Gong. On inductive limits of matrix algebras over higher dimensional spaces, part II. , 1997 .
[15] Huaxin Lin. Asymptotically Unitary Equivalence and Classification of Simple Amenable C*-algebras , 2008, 0806.0636.
[16] Huaxin Lin. Homotopy of unitaries in simple C ∗ -algebras with tracial rank one ✩ , 2008, 0805.0583.
[17] George A. Elliott,et al. On the classification of C*-algebras of real rank zero. , 1993 .
[18] O. Bratteli,et al. Small eigenvalue variation and real rank zero , 1996 .
[19] W. Winter. Nuclear dimension and -stability of pure C ∗ -algebras , 2010, 1006.2731.
[20] N. Phillips. HOW MANY EXPONENTIALS , 1994 .
[21] Xinhui Hongbing Jiang,et al. On a simple unital projectionless C*-algebra , 1999 .
[22] Kunyang Wang,et al. On the Bound of the C* Exponential Length , 2012, Canadian Mathematical Bulletin.
[23] AT structure of AH algebras with the ideal property and torsion free K-theory ✩ , 2010 .
[24] G. Gong. On the classification of simple inductive limit $C^*$-algebras. I: The reduction theorem , 2002, Documenta Mathematica.