$C^*$ exponential length of commutators unitaries in AH-algebras

For each unital $C^*$-algebra $A$, we denote $cel_{CU}(A)=\sup\{cel(u):u\in CU(A)\}$, where $cel(u)$ is the exponential length of $u$ and $CU(A)$ is the closure of the commutator subgroup of $U_0(A)$. In this paper, we prove that $cel_{CU}(A)=2\pi$ provided that $A$ is an $AH$ algebras with slow dimension growth whose real rank is not zero. On the other hand, we prove that $cel_{CU}(A)\leq 2\pi$ when $A$ is an $AH$ algebra with ideal property and of no dimension growth (if we further assume $A$ is not of real rank zero, we have $cel_{CU}(A)= 2\pi$).

[1]  N. Phillips,et al.  FACTORIZATION PROBLEMS IN THE INVERTIBLE GROUP OF A HOMOGENEOUS C*-ALGEBRA , 1996 .

[2]  N. Phillips Exponential length and traces , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  C. Pasnicu Shape equivalence, nonstable K-theory and AH algebras , 2000 .

[4]  G. Elliott,et al.  Injectivity of the Connecting Maps in AH Inductive Limit Systems , 2005, Canadian Mathematical Bulletin.

[5]  G. Elliott,et al.  On the classification of simple inductive limit C*-algebras, II: The isomorphism theorem , 2007 .

[6]  Huaxin Lin Approximate Unitary Equivalence in Simple C^*-algebras of Tracial Rank One , 2008, 0801.2929.

[7]  Huaxin Lin Exponentials in simple Z-stable C⁎-algebras , 2014 .

[8]  K. Thomsen Homomorphisms between finite direct sums of circle algebras , 1992 .

[9]  Mikio Nakahara,et al.  Top-down: , 2020, Limits of Supranational Justice.

[10]  W. Winter Nuclear dimension and $\mathcal{Z}$-stability of pure C∗-algebras , 2012 .

[11]  G. Elliott,et al.  On the classification of C*-algebras of real rank zero, V , 1996, 1811.06758.

[12]  J. Ringrose Exponential length and exponential rank in C*-algebras , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  Huaxin Lin Exponential Rank of C*-Algebras with Real Rank Zero and the Brown-Pedersen Conjectures , 1993 .

[14]  G. Gong On inductive limits of matrix algebras over higher dimensional spaces, part II. , 1997 .

[15]  Huaxin Lin Asymptotically Unitary Equivalence and Classification of Simple Amenable C*-algebras , 2008, 0806.0636.

[16]  Huaxin Lin Homotopy of unitaries in simple C ∗ -algebras with tracial rank one ✩ , 2008, 0805.0583.

[17]  George A. Elliott,et al.  On the classification of C*-algebras of real rank zero. , 1993 .

[18]  O. Bratteli,et al.  Small eigenvalue variation and real rank zero , 1996 .

[19]  W. Winter Nuclear dimension and -stability of pure C ∗ -algebras , 2010, 1006.2731.

[20]  N. Phillips HOW MANY EXPONENTIALS , 1994 .

[21]  Xinhui Hongbing Jiang,et al.  On a simple unital projectionless C*-algebra , 1999 .

[22]  Kunyang Wang,et al.  On the Bound of the C* Exponential Length , 2012, Canadian Mathematical Bulletin.

[23]  AT structure of AH algebras with the ideal property and torsion free K-theory ✩ , 2010 .

[24]  G. Gong On the classification of simple inductive limit $C^*$-algebras. I: The reduction theorem , 2002, Documenta Mathematica.