Mathematical approaches to modelling and controlling blood thrombin formation

[1]  H. Sauro,et al.  Conservation analysis in biochemical networks: computational issues for software writers. , 2004, Biophysical chemistry.

[2]  S. Schnell,et al.  Closed Form Solution for Time-dependent Enzyme Kinetics , 1997 .

[3]  K. Mann,et al.  A model for the tissue factor pathway to thrombin. I. An empirical study. , 1994, The Journal of biological chemistry.

[4]  D D Monkovic,et al.  Activation of human factor V by factor Xa and thrombin. , 1990, Biochemistry.

[5]  Anthony M. Bloch,et al.  Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.

[6]  E. Zerz Topics in Multidimensional Linear Systems Theory , 2000 .

[7]  P. Lollar,et al.  Structural basis for the decreased procoagulant activity of human factor VIII compared to the porcine homolog. , 1991, Journal of Biological Chemistry.

[8]  Solomon Lefschetz,et al.  Stability by Liapunov's Direct Method With Applications , 1962 .

[9]  P. McSharry,et al.  Mathematical and computational techniques to deduce complex biochemical reaction mechanisms. , 2004, Progress in biophysics and molecular biology.

[10]  M A Khanin,et al.  Analysis of the activated partial thromboplastin time test using mathematical modeling. , 2001, Thrombosis research.

[11]  K. Mann,et al.  Thrombin-catalyzed activation of single chain bovine factor V. , 1979, The Journal of biological chemistry.

[12]  P. Maini,et al.  A Century of Enzyme Kinetics: Reliability of the K M and v v max Estimates , 2003 .

[13]  P. Maini,et al.  Enzyme kinetics at high enzyme concentration , 2000, Bulletin of mathematical biology.

[14]  K. Mann,et al.  Surface-dependent reactions of the vitamin K-dependent enzyme complexes. , 1990, Blood.

[15]  K. Mann,et al.  A model for the tissue factor pathway to thrombin. II. A mathematical simulation. , 1994, Journal of Biological Chemistry.

[16]  K. Mann,et al.  Cooperative activation of human factor IX by the human extrinsic pathway of blood coagulation. , 1991, The Journal of biological chemistry.

[17]  Rutherford Aris,et al.  Introduction to the Analysis of Chemical Reactors , 1965 .

[18]  H. Hemker,et al.  Prothrombin Contributes to the Assembly of the Factor Va-Factor Xa Complex at Phosphatidylserine-containing Phospholipid Membranes (*) , 1995, The Journal of Biological Chemistry.

[19]  Extending the quasi-steady state approximation by changing variables , 1996 .

[20]  E. Beltrami,et al.  Mathematical analysis of a proteolytic positive-feedback loop: dependence of lag time and enzyme yields on the initial conditions and kinetic parameters. , 1993, Biochemistry.

[21]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 2019, Wiley Series in Probability and Statistics.

[22]  L. A. Segel,et al.  The Quasi-Steady-State Assumption: A Case Study in Perturbation , 1989, SIAM Rev..

[23]  Dongming Wang Elimination Practice - Software Tools and Applications , 2004 .

[24]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[25]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[26]  Mikhail A Panteleev,et al.  Tissue factor pathway inhibitor: a possible mechanism of action. , 2002, European journal of biochemistry.

[27]  K. C. Jones,et al.  A Model for the Stoichiometric Regulation of Blood Coagulation* , 2002, The Journal of Biological Chemistry.

[28]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[29]  M. Stayton,et al.  A computer analysis of the validity of the integrated Michaelis-Menten equation. , 1979, Journal of theoretical biology.

[30]  P. Vincent,et al.  Blood — Principles and Practice of Hematology , 1995 .

[31]  Lee A. Segel,et al.  Mathematics applied to deterministic problems in the natural sciences , 1974, Classics in applied mathematics.

[32]  R. Aris Prolegomena to the rational analysis of systems of chemical reactions , 1965 .

[33]  F. Martorana,et al.  On the kinetics of enzyme amplifier systems with negative feedback , 1974 .

[34]  J Jesty,et al.  Mathematical analysis of activation thresholds in enzyme-catalyzed positive feedbacks: application to the feedbacks of blood coagulation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[35]  K. Mann,et al.  Thrombin generation profiles in deep venous thrombosis , 2005, Journal of thrombosis and haemostasis : JTH.

[36]  Mikhail A. Panteleev,et al.  Mathematical Modeling and Computer Simulation in Blood Coagulation , 2006, Pathophysiology of Haemostasis and Thrombosis.

[37]  Piet Hemker,et al.  Numerical methods for differential equations in system simulation and in parameter estimation : (analysis and simulation of biochemical systems; proc. of the 8th febs meeting, amsterdam, 1972, p 59-80) , 1972 .

[38]  Bruce W. Char,et al.  Automatic identification of time scales in enzyme kinetics models , 1994, ISSAC '94.

[39]  Stephen Barnett,et al.  Introduction to Mathematical Control Theory , 1975 .

[40]  E. Davie,et al.  A Brief Historical Review of the Waterfall/Cascade of Blood Coagulation , 2003, Journal of Biological Chemistry.

[41]  K. Mann,et al.  The contribution of bovine Factor V and Factor Va to the activity of prothrombinase. , 1979, The Journal of biological chemistry.

[42]  R J Leipold,et al.  Mathematical Model of Serine Protease Inhibition in the Tissue Factor Pathway to Thrombin (*) , 1995, The Journal of Biological Chemistry.

[43]  G. Broze,et al.  Regulation of Extrinsic Pathway Factor Xa Formation by Tissue Factor Pathway Inhibitor* , 1998, The Journal of Biological Chemistry.

[44]  K. Mann,et al.  "Normal" thrombin generation. , 1999, Blood.

[45]  H. Hemker,et al.  The role of phospholipid and factor VIIIa in the activation of bovine factor X. , 1981, The Journal of biological chemistry.

[46]  Piet Hemker,et al.  Mathematical modelling in blood coagulation ; Simulation and parameter estimation , 1997 .

[47]  K. Mann,et al.  "Clotspeed," a mathematical simulation of the functional properties of prothrombinase. , 1984, The Journal of biological chemistry.

[48]  H. Amann,et al.  Ordinary Differential Equations: An Introduction to Nonlinear Analysis , 1990 .