Solving Fixed-Point Equations by Derivation Tree Analysis

Systems of equations over ω-continuous semirings can be mapped to context-free grammars in a natural way. We show how an analysis of the derivation trees of the grammar yields new algorithms for approximating and even computing exactly the least solution of the system.

[1]  James W. Thatcher,et al.  Characterizing Derivation Trees of Context-Free Grammars through a Generalization of Finite Automata Theory , 1967, J. Comput. Syst. Sci..

[2]  M. Droste,et al.  Handbook of Weighted Automata , 2009 .

[3]  J. Shepherdson,et al.  Computer programming and formal systems , 1965 .

[4]  Flemming Nielson,et al.  Principles of Program Analysis , 1999, Springer Berlin Heidelberg.

[5]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[6]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[7]  Pierre Ganty,et al.  Parikhʼs theorem: A simple and direct automaton construction , 2010, Inf. Process. Lett..

[8]  Mohamed Faouzi Atig,et al.  Approximating Petri Net Reachability Along Context-free Traces , 2011, FSTTCS.

[9]  Symeon Bozapalidis Equational Elements in Additive Algebras , 1999, Theory of Computing Systems.

[10]  Michael Luttenberger,et al.  Newton ’ s Method for ω-Continuous Semirings ⋆ , 2008 .

[11]  Borivoj Melichar,et al.  Finding Common Motifs with Gaps Using Finite Automata , 2006, CIAA.

[12]  Michael Luttenberger,et al.  An Extension of Newton's Method to omega -Continuous Semirings , 2007, Developments in Language Theory.

[13]  Pierre Ganty,et al.  Complexity of pattern-based verification for multithreaded programs , 2011, POPL '11.

[14]  Nivat G. Päun,et al.  Handbook of Formal Languages , 2013, Springer Berlin Heidelberg.

[15]  Wojciech Rytter,et al.  Efficient Computation of Throughput Values of Context-Free Languages , 2007, CIAA.

[16]  J. Esparza,et al.  An Extension of Newton ’ s Method to ω-Continuous Semirings ? , 2007 .

[17]  Michael Luttenberger,et al.  An Extension of Parikh's Theorem beyond Idempotence , 2011, ArXiv.

[18]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[19]  Noam Chomsky,et al.  The Algebraic Theory of Context-Free Languages* , 1963 .

[20]  Michael Luttenberger,et al.  Derivation tree analysis for accelerated fixed-point computation , 2008, Theor. Comput. Sci..

[21]  Werner Kuich,et al.  Semirings and Formal Power Series: Their Relevance to Formal Languages and Automata , 1997, Handbook of Formal Languages.

[22]  Stephen Cole Kleene,et al.  On notation for ordinal numbers , 1938, Journal of Symbolic Logic.

[23]  Rupak Majumdar,et al.  Bounded underapproximations , 2008, Formal Methods Syst. Des..

[24]  Jean Berstel,et al.  Recognizable Formal Power Series on Trees , 1982, Theor. Comput. Sci..

[25]  Michael Luttenberger,et al.  On Fixed Point Equations over Commutative Semirings , 2007, STACS.

[26]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[27]  Michael Luttenberger,et al.  Newtonian program analysis , 2010, JACM.

[28]  Val Tannen,et al.  Provenance semirings , 2007, PODS.