Mapping Quantitative Trait Loci With Censored Observations

The existing statistical methods for mapping quantitative trait loci (QTL) assume that the phenotype follows a normal distribution and is fully observed. These assumptions may not be satisfied when the phenotype pertains to the survival time or failure time, which has a skewed distribution and is usually subject to censoring due to random loss of follow-up or limited duration of the experiment. In this article, we propose an interval-mapping approach for censored failure time phenotypes. We formulate the effects of QTL on the failure time through parametric proportional hazards models and develop efficient likelihood-based inference procedures. In addition, we show how to assess genome-wide statistical significance. The performance of the proposed methods is evaluated through extensive simulation studies. An application to a mouse cross is provided.

[1]  Rebecca W. Doerge,et al.  Statistical issues in the search for genes affecting quantitative traits in experimental populations , 1997 .

[2]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[3]  Jane Fridlyand,et al.  Multiple genetic loci modify susceptibility to plasmacytoma-related morbidity in Eμ-v-abl transgenic mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  B. Mangin,et al.  Approximate thresholds of interval mapping tests for QTL detection. , 1994, Genetics.

[5]  Z B Zeng,et al.  Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data: Kalbfleisch/The Statistical , 2002 .

[7]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[8]  B. S. Yandell,et al.  Mapping loci controlling vernalization requirement and flowering time in Brassica napus , 1995, Theoretical and Applied Genetics.

[9]  D Siegmund,et al.  Statistical methods for mapping quantitative trait loci from a dense set of markers. , 1999, Genetics.

[10]  Z. Zeng,et al.  Multiple interval mapping for quantitative trait loci. , 1999, Genetics.

[11]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[12]  Z. Zeng Precision mapping of quantitative trait loci. , 1994, Genetics.

[13]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[14]  R. Doerge,et al.  Empirical threshold values for quantitative trait mapping. , 1994, Genetics.

[15]  H. Toutenburg,et al.  Lehmann, E. L., Nonparametrics: Statistical Methods Based on Ranks, San Francisco. Holden‐Day, Inc., 1975. 480 S., $ 22.95 . , 1977 .

[16]  G. M. Lathrop,et al.  Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats , 1991, Nature.

[17]  M A Newton,et al.  Genetic identification of multiple loci that control breast cancer susceptibility in the rat. , 1998, Genetics.

[18]  Karl W Broman,et al.  Mapping quantitative trait loci in the case of a spike in the phenotype distribution. , 2003, Genetics.

[19]  D. Siegmund Sequential Analysis: Tests and Confidence Intervals , 1985 .

[20]  R. Jansen,et al.  Interval mapping of multiple quantitative trait loci. , 1993, Genetics.

[21]  M. Lynch,et al.  Genetics and Analysis of Quantitative Traits , 1996 .

[22]  E. Lander,et al.  Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. , 1989, Genetics.

[23]  Z. Ying,et al.  Checking the Cox model with cumulative sums of martingale-based residuals , 1993 .

[24]  G. Churchill,et al.  A statistical framework for quantitative trait mapping. , 2001, Genetics.

[25]  J G Ibrahim,et al.  Estimating equations with incomplete categorical covariates in the Cox model. , 1998, Biometrics.

[26]  Eric S. Lander,et al.  Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat , 1991, Cell.

[27]  R. Jansen,et al.  A penalized likelihood method for mapping epistatic quantitative trait Loci with one-dimensional genome searches. , 2002, Genetics.

[28]  C. Haley,et al.  A simple regression method for mapping quantitative trait loci in line crosses using flanking markers , 1992, Heredity.

[29]  B. Yandell,et al.  Statistical issues in the analysis of quantitative traits in combined crosses. , 2001, Genetics.