Thermoresponsive polymeric gel as an on-demand transdermal drug delivery system for pain management.

[1]  Huali Nie,et al.  Facile fabrication of P(OVNG-co-NVCL) thermoresponsive double-hydrophilic glycopolymer nanofibers for sustained drug release. , 2015, Colloids and surfaces. B, Biointerfaces.

[2]  Jingjing Wei,et al.  Investigation of cell behaviors on thermo-responsive PNIPAM microgel films. , 2015, Colloids and surfaces. B, Biointerfaces.

[3]  K. Sen,et al.  Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications , 2015 .

[4]  C. Heard,et al.  Enhanced in vitro transdermal delivery of caffeine using a temperature- and pH-sensitive nanogel, poly(NIPAM-co-AAc). , 2013, International journal of pharmaceutics.

[5]  Baisong Chang,et al.  Poly(vinylcaprolactam)-based biodegradable multiresponsive microgels for drug delivery. , 2013, Biomacromolecules.

[6]  Ajazuddin,et al.  Approaches for breaking the barriers of drug permeation through transdermal drug delivery. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[7]  Zhipeng Chen,et al.  Development of brucine-loaded microsphere/thermally responsive hydrogel combination system for intra-articular administration. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[8]  J. Im,et al.  Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater. , 2012, Materials science & engineering. C, Materials for biological applications.

[9]  Jacqueline Forcada,et al.  Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide) , 2012 .

[10]  Claus-Michael Lehr,et al.  Soluplus® as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo. , 2012, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[11]  Christopher Branford-White,et al.  Optimization of adsorption conditions of BSA on thermosensitive magnetic composite particles using response surface methodology. , 2011, Colloids and surfaces. B, Biointerfaces.

[12]  Mathias Destarac,et al.  Thermoresponsive poly(N-vinyl caprolactam)-coated gold nanoparticles: sharp reversible response and easy tunability. , 2011, Chemical communications.

[13]  A. Elaissari,et al.  Stimuli-responsive magnetic particles for biomedical applications. , 2011, International journal of pharmaceutics.

[14]  K. Chennazhi,et al.  Biodegradable and thermo-sensitive chitosan-g-poly(N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier , 2011 .

[15]  D. Nematollahi,et al.  Electrochemical evidences in oxidation of acetaminophen in the presence of glutathione and N-acetylcysteine. , 2010, Chemical communications.

[16]  L. Jorge,et al.  Topical preparations for pain relief: efficacy and patient adherence , 2010, Journal of pain research.

[17]  Priyanka Ghosh,et al.  Challenges and opportunities in dermal/transdermal delivery. , 2010, Therapeutic delivery.

[18]  V. Pillay,et al.  A Review of Multi-Responsive Membranous Systems for Rate-Modulated Drug Delivery , 2010, AAPS PharmSciTech.

[19]  G. López,et al.  A low-cost, rapid deposition method for "smart" films: applications in mammalian cell release. , 2010, ACS applied materials & interfaces.

[20]  J. Forcada,et al.  N-vinylcaprolactam-based microgels for biomedical applications , 2010 .

[21]  M. Prabaharan,et al.  Thermosensitive micelles based on folate-conjugated poly(N-vinylcaprolactam)-block-poly(ethylene glycol) for tumor-targeted drug delivery. , 2009, Macromolecular bioscience.

[22]  Robert Langer,et al.  Transdermal drug delivery , 2008, Nature Biotechnology.

[23]  M. Prabaharan,et al.  Stimuli-responsive chitosan-graft-poly(N-vinylcaprolactam) as a promising material for controlled hydrophobic drug delivery. , 2008, Macromolecular bioscience.

[24]  U. Müller-Ladner,et al.  Drug delivery systems for the treatment of rheumatoid arthritis , 2008 .

[25]  M. Prausnitz,et al.  The effect of heat on skin permeability. , 2008, International journal of pharmaceutics.

[26]  P. Dawson,et al.  Development of an HPLC-MS/MS method for the selective determination of paracetamol metabolites in mouse urine. , 2008, Analytical biochemistry.

[27]  B. Suhagia,et al.  Preparation and characterization of etoricoxib-β-cyclodextrin complexes prepared by the kneading method , 2007, Acta pharmaceutica.

[28]  U. Müller-Ladner,et al.  Emerging targets of biologic therapies for rheumatoid arthritis , 2007, Nature Clinical Practice Rheumatology.

[29]  Yazhou Wang,et al.  Thermo-sensitive Polymers for Controlled-release Drug Delivery Systems , 2006 .

[30]  H. Tenhu,et al.  Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). , 2005, Biomaterials.

[31]  N. V. Ramakrishna,et al.  Validated liquid chromatographic ultraviolet method for the quantitation of Etoricoxib in human plasma using liquid-liquid extraction. , 2005, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[32]  H. Tenhu,et al.  Pyrene-Labeled Graft Copolymers of N-Vinylcaprolactam: Synthesis and Solution Properties in Water , 2005 .

[33]  H. Tenhu,et al.  Formation of Colloidally Stable Phase Separated Poly(N-vinylcaprolactam) in Water: A Study by Dynamic Light Scattering, Microcalorimetry, and Pressure Perturbation Calorimetry , 2004 .

[34]  G. Geisslinger,et al.  Determination of etoricoxib in human plasma by liquid chromatography-tandem mass spectrometry with electrospray ionisation. , 2003, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[35]  A. Khokhlov,et al.  Behavior of Poly(N-vinylcaprolactam-co-methacrylic acid) Macromolecules in Aqueous Solution: Interplay between Coulombic and Hydrophobic Interaction , 2002 .

[36]  S. Shen,et al.  Transdermal drug delivery enhanced and controlled by erbium:YAG laser: a comparative study of lipophilic and hydrophilic drugs. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[37]  A. Khokhlov,et al.  Thermoshrinking behavior of poly(vinylcaprolactam) gels in aqueous solution , 1996 .

[38]  A. E. Vasiliev,et al.  Hydrophilic polymeric matrices for enhanced transdermal drug delivery , 1996 .

[39]  K H Jones,et al.  An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. , 1985, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[40]  C. Boghina,et al.  Properties of solutions of poly‐N‐vinylcaprolactam , 1968 .

[41]  M. Vinardell,et al.  Alternative methods for eye and skin irritation tests: an overview. , 2008, Journal of pharmaceutical sciences.

[42]  M. Riekkola,et al.  Stability and thermosensitive properties of various poly (N-vinylcaprolactam) microgels , 2002 .