On maximal convex lattice polygons inscribed in a plane convex set
暂无分享,去创建一个
[1] Norihide Tokushige,et al. The Minimum Area of Convex Lattice n-Gons , 2004, Comb..
[2] Imre Brny. in Convex Position , 1999 .
[3] Imre Bárány,et al. Sylvester's question : The probability that n points are in convex position , 1999 .
[4] Jovisa D. Zunic. Limit shape of convex lattice polygons having the minimal Linfinity diameter w.r.t. the number of their vertices , 1998, Discret. Math..
[5] Affine perimeter and limit shape. , 1997 .
[6] Imre Bárány,et al. The limit shape of convex lattice polygons , 1995, Discret. Comput. Geom..
[7] Miklós Simonovits,et al. Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..
[8] Jovisa D. Zunic,et al. On the Maximal Number of Edges of Convex Digital Polygons Included into an m x m -Grid , 1995, J. Comb. Theory A.
[9] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[10] A. Vershik,et al. The limit shape of convex lattice polygons and related topics , 1994 .
[11] E. Lutwak. Extended affine surface area , 1991 .
[12] George E. Andrews,et al. A LOWER BOUND FOR THE VOLUME OF STRICTLY CONVEX BODIES WITH MANY BOUNDARY LATTICE POINTS , 1963 .
[13] A. Rényi,et al. über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .
[14] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[15] G. A. Miller,et al. MATHEMATISCHE ZEITSCHRIFT. , 1920, Science.