Doped GaSe crystals for laser frequency conversion

Doping of gallium selenide (GaSe) is effective for controlling the physical properties that affect its frequency conversion efficiency. Despite its promising properties for nonlinear optical conversion, GaSe has not achieved the wide application that some other nonlinear optical materials enjoy. This is mainly due to the weak interlayer van der Waals bonding, which makes it difficult to grow and process large, single-crystals samples of high optical quality. Scientists in Russia and China review the growth of nonlinear GaSe crystals for laser frequency conversion. In particular, they assess recent progress in using doping to modify the physical properties of GaSe crystals. Doping confers many benefits, including raising the optical damage threshold, effectively eliminating two-photon absorption and enabling dispersion in the terahertz range to be controlled independently of that in the mid-infrared range.

[1]  Peter G. Schunemann,et al.  Two-photon absorption in GaSe and CdGeAs2 , 1998 .

[2]  Jin Guo,et al.  Limiting pump intensity for sulfur-doped gallium selenide crystals , 2014 .

[3]  D. Suhre,et al.  Bridgman growth of GaSe crystals for nonlinear optical applications , 1997 .

[4]  H. Ertap,et al.  Exciton photoluminescence, photoconductivity and absorption in GaSe0.9Te0.1 alloy crystals , 2009 .

[5]  W. Shi,et al.  Widely tunable monochromatic THz sources based on phase-matched difference-frequency generation in nonlinear-optical crystals: A novel approach , 2006 .

[6]  Zhu Wei,et al.  Optical properties of Te-doped GaSe crystal , 2011 .

[7]  A. Gouskov,et al.  Growth and characterization of III–VI layered crystals like GaSe, GaTe, InSe, GaSe1-xTex and GaxIn1-xSe , 1982 .

[8]  Victor V. Atuchin,et al.  Growth, real structure and applications of GaSe1−xSx crystals , 2006 .

[9]  Victor V. Atuchin,et al.  Growth and microstructure of heterogeneous crystal GaSe:InS , 2013 .

[10]  Rong Wang,et al.  AgGaS2- and Al-doped GaSe Crystals for IR Applications , 2011 .

[11]  P. Vohl Synthesis and crystal growth of CdGeP2 , 1979 .

[12]  G. V. Lanskii,et al.  Structural characterization of pure and doped GaSe by nonlinear optical method , 2011 .

[13]  Maxim M. Nazarov,et al.  On the choice of nonlinear optical and semiconductor converters of femtosecond laser pulses into terahertz range , 2009 .

[14]  I. Grygorchak,et al.  Structure and physical properties of gallium selenide laser-intercalated with nickel , 2007 .

[15]  A. N. Soldatov,et al.  Optimal Doping of GaSe Crystals for Nonlinear Optics Applications , 2014 .

[16]  Y.J. Ding,et al.  High-Power Tunable Terahertz Sources Based on Parametric Processes and Applications , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  Phase‐matched second‐harmonic generation at 789.5 nm in a GaSe crystal , 1996 .

[18]  Chih-Wei Luo,et al.  Comment on “GaSe1−xSx and GaSe1−xTex thick crystals for broadband terahertz pulses generation” [Appl. Phys. Lett. 99, 081105 (2011)] , 2012 .

[19]  Ci-Ling Pan,et al.  Erbium doped GaSe crystal for mid-IR applications. , 2006, Optics express.

[20]  Chih-Wei Luo,et al.  Optical properties and application of GaSe: AgGaSe2 crystal , 2012 .

[21]  Gopal C. Bhar,et al.  Tunable coherent infrared source from 5-16 µm based on difference-frequency mixing in an indium-doped GaSe crystal , 2006 .

[22]  V. V. Smirnov,et al.  A new effective material for nonlinear optics , 1972 .

[23]  Y. Andreev,et al.  Simulation of thermo-optic coupling in the thermally anisotropic gallium selenide crystal for second harmonic generation , 2014 .

[24]  Valerii A. Svetlichnyi,et al.  Growth of GaSe and GaS single crystals , 2011 .

[25]  R. Turan,et al.  Photoluminescence spectra of nitrogen implanted GaSe crystals , 2008 .

[26]  Ci-Ling Pan,et al.  Optical properties and potential applications of ɛ-GaSe at terahertz frequencies , 2009 .

[27]  Characterization of optical quality of GaSe:Al crystals by exciton absorption peak parameters , 2014, Journal of Materials Science: Materials in Electronics.

[28]  D. Edwards Gallium Selenide (GaSe) , 1997 .

[29]  Y. Andreev,et al.  Modified GaSe crystal as a parametric frequency converter , 2006 .

[30]  Kerim R. Allakhverdiev,et al.  BRIEF COMMUNICATIONS: Investigation of linear and nonlinear optical properties of GaSxSe1-x crystals , 1982 .

[31]  Aleksey Tyazhev,et al.  Picosecond mid-infrared optical parametric amplifier based on the wide-bandgap GaS(0.4)Se(0.6) pumped by a Nd:YAG laser system at 1064 nm. , 2011, Optics letters.

[32]  Konstantin A. Kokh,et al.  Application of a rotating heat field in Bridgman–Stockbarger crystal growth , 2005 .

[33]  M. Nazarov,et al.  Optical properties of non-linear crystal grown from the melt GaSe-AgGaSe2 , 2013 .

[34]  W. Klemm,et al.  Messungen an Gallium- und Indium-Verbindungen. X. Über die Chalkogenide von Gallium und Indium , 1934 .

[35]  M. Stamate,et al.  Optical properties of p-GaSe single crystals doped with Te , 2009 .

[36]  Zhi-Hui Kang,et al.  SHG in doped GaSe:In crystals. , 2008, Optics express.

[37]  D R Suhre,et al.  Improved crystal quality and harmonic generation in GaSe doped with indium. , 1997, Optics letters.

[38]  Yujie J. Ding Progress in terahertz sources based on difference-frequency generation [Invited] , 2014 .

[39]  S. Onari,et al.  Lattice vibrations of pure and doped GaSe , 2006 .

[40]  C. Joshi,et al.  High-power tunable, 0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO 2 laser lines , 2007 .

[41]  Valentin Petrov,et al.  GaS0.4Se0.6: Relevant properties and potential for 1064 nm pumped mid-IR OPOs and OPGs operating above 5 μm , 2011 .

[42]  Y. Andreev,et al.  Influence of composition ratio variation on optical frequency conversion in mixed crystals. I. Gradual variation of composition ratio , 2007 .

[43]  David E. Zelmon,et al.  Modified GaSe crystals for mid-IR applications , 1999 .

[44]  K. Kato,et al.  90 degrees phase-matched third-harmonic generation of CO(2) laser frequencies in AgGa(1-x)In(x)Se(2). , 1999, Optics letters.

[45]  Zhenyou Wang,et al.  Growth and quality of gallium selenide (GaSe) crystals , 2013 .

[46]  Grigory Lanskii,et al.  Optimal Te-doping in GaSe for non-linear applications. , 2012, Optics express.

[47]  A. Kasuya,et al.  Stacking fault density and splitting of exciton states in ϵ-GaSe , 1985 .

[48]  P. Fischer,et al.  Magnetic ordering in HoBi, HoS, ErS and ErSe , 1985 .

[49]  V. Atuchin,et al.  Tellurium and sulfur doped GaSe for mid-IR applications , 2012 .

[50]  Zhi-Hui Kang,et al.  Impact of fs and ns pulses on indium and sulfur doped gallium selenide crystals , 2014 .

[51]  Zhi-Hui Kang,et al.  SHG phase matching in GaSe and mixed GaSe1(1-x)S(x), x < or =0.412, crystals at room temperature. , 2008, Optics express.

[52]  K. Kokh,et al.  GaSe:Er3+ crystals for SHG in the infrared spectral range , 2014 .

[53]  Aleksey Tyazhev,et al.  Some properties of the mixed GaS0.4Se0.6 nonlinear crystal in comparison to GaSe , 2011, LASE.

[54]  K. Kokh,et al.  Dispersion properties of GaS studied by THz-TDS , 2014 .

[55]  Grigory Lanskii,et al.  Widely linear and non-phase-matched optical-to-terahertz conversion on GaSe:Te crystals. , 2012, Optics letters.

[56]  Wei Shi,et al.  A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540 μm for variety of potential applications , 2004 .

[57]  Wei Shi,et al.  Single-frequency terahertz source pumped by Q-switched fiber lasers based on difference-frequency generation in GaSe crystal. , 2007, Optics letters.

[58]  N. Fernelius,et al.  Properties of gallium selenide single crystal , 1994 .

[59]  P. Cavaliere,et al.  Dislocations in AIIIBVI single crystals , 1988 .

[60]  I. Evtodiev,et al.  The anisotropy of the optical properties of ternary semiconductors formed by elements of III and VI groups , 2009 .

[61]  D. Suhre,et al.  Far-infrared conversion materials: Gallium selenide for far-infrared conversion applications , 1998 .

[62]  J. Howe The Al-Se (Aluminum-Selenium) system , 1989 .

[63]  V. V. Zuev,et al.  Dispersion properties of GaSe1-xSx in the terahertz range , 2011 .

[64]  Konstantin L. Vodopyanov,et al.  New dispersion relationships for GaSe in the 0.65–18 μm spectral region , 1995 .

[65]  Jonathan T. Goldstein,et al.  Anisotropy of optical absorption in GaSe studied by midinfrared spectroscopy , 2003 .

[66]  N. Umemura,et al.  Sellmeier equations for GaS and GaSe and their applications to the nonlinear optics in GaSxSe(1-x). , 2011, Optics letters.

[67]  K. Mandal,et al.  Electronic structure of substitutional defects and vacancies in GaSe , 2009 .

[68]  Lei Zhang,et al.  Characterization of Bridgman grown GaSe:Al crystals , 2013 .

[69]  V. Svetlichnyi,et al.  Absorption anisotropy in sulfur doped gallium selenide crystals studied by THz-TDS , 2014 .

[70]  V. Gorelik,et al.  Emission spectra of silver-infiltrated opal photonic crystals under excitation through optical fibers , 2009 .

[71]  Y. Andreev,et al.  Generating femtosecond pulses in the mid-IR and THz ranges in GaSe1 − xTex crystals , 2015 .

[72]  J. Goldstein,et al.  Large single crystals of gallium selenide: growing, doping by In and characterization , 2004 .

[73]  I. B. Zotova,et al.  Spectral measurements of two-photon absorption coefficients for CdSe and GaSe crystals. , 2001, Applied optics.

[74]  Nils C. Fernelius,et al.  Doping Dependence of Electronic and Mechanical Properties of GaSe 1−x Te x and Ga 1−x In x Se from First Principles , 2010 .