Angular momentum conservation law in light-front quantum field theory

We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that $j^3$, the $z$-component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of $j^3$ under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.

[1]  A. Staśto,et al.  Scattering amplitudes in the light-front formalism , 2015 .

[2]  C. Ji,et al.  Interpolating helicity spinors between the instant form and the light-front form , 2015, 1509.00431.

[3]  A. Mukherjee,et al.  On transverse spin sum rules , 2013, 1308.1519.

[4]  Matthew D. Schwartz,et al.  Quantum Field Theory and the Standard Model , 2013 .

[5]  E. Leader,et al.  The angular momentum controversy: What’s it all about and does it matter? , 2013, Physics of Particles and Nuclei.

[6]  W. Glöckle,et al.  Spin in Relativistic Quantum Theory , 2012, 1208.5840.

[7]  B. Bakker,et al.  Critique of the angular momentum sum rules and a new angular momentum sum rule , 2004, hep-ph/0406139.

[8]  C. Ji,et al.  Angular Conditions, Relations between Breit and Light-Front Frames, and Subleading Power Corrections , 2003, hep-ph/0301213.

[9]  O. W. Greenberg Spin in Particle Physics , 2002 .

[10]  S. Brodsky,et al.  Light-cone representation of the spin and orbital angular momentum of relativistic composite systems , 2000, hep-th/0003082.

[11]  B. Bakker Forms of Relativistic Dynamics , 2001 .

[12]  R. Kundu,et al.  On Orbital Angular Momentum in Deep Inelastic Scattering , 1998, hep-ph/9802406.

[13]  S. Pinsky,et al.  Quantum chromodynamics and other field theories on the light cone , 1997, hep-ph/9705477.

[14]  L. Dixon Calculating scattering amplitudes efficiently , 1996, hep-ph/9601359.

[15]  S. Brodsky,et al.  Helicity selection rules and tests of gluon spin in exclusive quantum-chromodynamic processes , 1981 .

[16]  S. Brodsky,et al.  Exclusive Processes in Perturbative Quantum Chromodynamics , 1980 .

[17]  H. Leutwyler,et al.  Relativistic dynamics on a null plane , 1978 .

[18]  S. Brodsky,et al.  Quantum electrodynamics and renormalization theory in the infinite momentum frame , 1972 .

[19]  D. Soper INFINITE-MOMENTUM HELICITY STATES. , 1972 .

[20]  J. Kogut,et al.  Quantum Electrodynamics in the Infinite-Momentum Frame , 1970 .

[21]  S. Weinberg Dynamics at Infinite Momentum , 1966 .