Pruning Neural Belief Propagation Decoders
暂无分享,去创建一个
Laurent Schmalen | Alexandre Graell i Amat | Henry D. Pfister | Christian Häger | Andreas Buchberger
[1] Yair Be'ery,et al. Learning to decode linear codes using deep learning , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[2] Marc P. C. Fossorier,et al. Iterative reliability-based decoding of linear block codes with adaptive belief propagation , 2005, IEEE Communications Letters.
[3] David Burshtein,et al. Deep Learning Methods for Improved Decoding of Linear Codes , 2017, IEEE Journal of Selected Topics in Signal Processing.
[4] Keith M. Chugg,et al. Random Redundant Soft-In Soft-Out Decoding of Linear Block Codes , 2006, 2006 IEEE International Symposium on Information Theory.
[5] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[6] Henry D. Pfister,et al. Learned Belief-Propagation Decoding with Simple Scaling and SNR Adaptation , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).
[7] Henry D. Pfister,et al. Decoding Reed-Muller Codes Using Minimum- Weight Parity Checks , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).
[8] Johannes B. Huber,et al. Multiple-bases belief-propagation decoding of high-density cyclic codes , 2009, IEEE Transactions on Communications.
[9] Krishna R. Narayanan,et al. Iterative Soft-Input Soft-Output Decoding of Reed-Solomon Codes by Adapting the , 2005 .
[10] Krishna R. Narayanan,et al. Iterative Soft-Input Soft-Output Decoding of Reed–Solomon Codes by Adapting the Parity-Check Matrix , 2005, IEEE Transactions on Information Theory.