Mesh tying on curved interfaces in 3D

In this work, a mortar method is implemented for tying arbitrary dissimilar 3D meshes, i.e. 3D meshes with curved, non‐matching interfaces. The 3D method requires approximations to the surface integrals specified by the projection of the displacement jump across the interface onto the Lagrange multiplier space. The numerical integration scheme is presented and several Lagrange multiplier interpolation schemes are considered. Furthermore, some implementational issues such as how to handle boundary conditions will be described such that stability is retained. Finally, the implementation will be demonstrated in numerical simulations and comparison of different formulations will be made.

[1]  G. R. Cowper,et al.  Gaussian quadrature formulas for triangles , 1973 .

[2]  T. Belytschko,et al.  A uniform strain hexahedron and quadrilateral with orthogonal hourglass control , 1981 .

[3]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[4]  R. Taylor,et al.  A mixed formulation for the finite element solution of contact problems , 1992 .

[5]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[6]  Mohammad A. Aminpour,et al.  A coupled analysis method for structures with independently modelled finite element subdomains , 1995 .

[7]  M. Carter Computer graphics: Principles and practice , 1997 .

[8]  Yvon Maday,et al.  The mortar element method for three dimensional finite elements , 1997 .

[9]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[10]  Clark R. Dohrmann,et al.  Methods for connecting dissimilar three-dimensional finite element meshes , 2000 .

[11]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[12]  Padmanabhan Seshaiyer,et al.  hp submeshing via non-conforming finite element methods , 2000 .

[13]  Clark R. Dohrmann,et al.  A method for connecting dissimilar finite element meshes in two dimensions , 2000 .

[14]  Barbara I. Wohlmuth,et al.  Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.

[15]  Panayot S. Vassilevski,et al.  Multiplier Spaces for the Mortar Finite Element Method in Three Dimensions , 2001, SIAM J. Numer. Anal..

[16]  C. Felippa,et al.  A simple algorithm for localized construction of non‐matching structural interfaces , 2002 .